Advertisement

Synthese

pp 1–27 | Cite as

Possibility spaces and the notion of novelty: from music to biology

  • Maël Montévil
Article
  • 77 Downloads

Abstract

We provide a new perspective on the relation between the space of description of an object and the appearance of novelties. One of the aims of this perspective is to facilitate the interaction between mathematics and historical sciences. The definition of novelties is paradoxical: if one can define in advance the possibles, then they are not genuinely new. By analyzing the situation in set theory, we show that defining generic (i.e., shared) and specific (i.e., individual) properties of elements of a set are radically different notions. As a result, generic and specific definitions of possibilities cannot be conflated. We argue that genuinely stating possibilities requires that their meaning has to be made explicit. For example, in physics, properties playing theoretical roles are generic; then, generic reasoning is sufficient to define possibilities. By contrast, in music, we argue that specific properties matter, and generic definitions become insufficient. Then, the notion of new possibilities becomes relevant and irreducible. In biology, among other examples, the generic definition of the space of DNA sequences is insufficient to state phenotypic possibilities even if we assume complete genetic determinism. The generic properties of this space are relevant for sequencing or DNA duplication, but they are inadequate to understand phenotypes. We develop a strong concept of biological novelties which justifies the notion of new possibilities and is more robust than the notion of changing description spaces. These biological novelties are not generic outcomes from an initial situation. They are specific and this specificity is associated with biological functions, that is to say, with a specific causal structure. Thus, we think that in contrast with physics, the concept of new possibilities is necessary for biology.

Keywords

Novelty Possibility space Biological functions Organization Emergence 

Notes

Acknowledgements

I am grateful to Ana Soto, Giuseppe Longo, Carlos Sonnenschein, Marc Godinot, Paul-Antoine Miquel, Arnaud Pocheville and the anonymous reviewers for their critical insights on previous versions of this article. I also would like to thank Guillaume Lecointre for helpful discussions and Jean Lassègue for pointing out the work of Leibniz.

References

  1. Adams, A., Zenil, H., Davies, P., & Walker, S. (2017). Formal definitions of unbounded evolution and innovation reveal universal mechanisms for open-ended evolution in dynamical systems. Scientific Reports, 7,  https://doi.org/10.1038/s41598-017-00810-8.
  2. Anderson, P. W. (1972). More is different. Science, 177, 393–396.  https://doi.org/10.1126/science.177.4047.393.CrossRefGoogle Scholar
  3. Anderson, P. W., & Stein, D. L. (1985). Broken symmetry, emergent properties, dissipative structures, life: Are they related? In E. F. Yates (Ed.), Self-organizing systems: The emergence of order (pp. 445–458). NY: Plenum Press.Google Scholar
  4. Barnes, C., Speroni, L., Quinn, K., Montévil, M., Saetzler, K., Bode-Animashaun, G., et al. (2014). From single cells to tissues: Interactions between the matrix and human breast cells in real time. PLoS ONE, 9, e93325.  https://doi.org/10.1371/journal.pone.0093325.CrossRefGoogle Scholar
  5. Beatty, J. (1995). The evolutionary contingency thesis. In Concepts, theories, and rationality in the biological sciences, pp. 45–81.Google Scholar
  6. Bedau, M. A., McCaskill, J. S., Packard, N. H., Rasmussen, S., Adami, C., Green, D. G., et al. (2000). Open problems in artificial life. Artificial Life, 6, 363–376.  https://doi.org/10.1162/106454600300103683.CrossRefGoogle Scholar
  7. Bergson, H. (2014). La pensée et le mouvant. Editions Flammarion.Google Scholar
  8. Bich, L., & Bocchi, G. (2012). Emergent processes as generation of discontinuities. Methods, models, simulations and approaches towards a general theory of change (pp. 135–146). Singapore: World Scientific.CrossRefGoogle Scholar
  9. Borges, J. L. (1998). The library of babel. Collected fictions.Google Scholar
  10. Camalet, S., Duke, T., Julicher, F., & Prost, J. (2000). Auditory sensitivity provided by self-tuned critical oscillations of hair cells. In Proceedings of the national academy of sciences, pp. 3183–3188.  https://doi.org/10.1073/pnas.97.7.3183.
  11. Chowdhury, D. (2013). Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective. Physics Reports, 529, 1–197.  https://doi.org/10.1016/j.physrep.2013.03.005.CrossRefGoogle Scholar
  12. Cortini, R., Barbi, M., Caré, B. R., Lavelle, C., Lesne, A., Mozziconacci, J., et al. (2016). The physics of epigenetics. Reviews of Modern Physics, 88, 025002.  https://doi.org/10.1103/RevModPhys.88.025002.CrossRefGoogle Scholar
  13. Danchin, E., & Pocheville, A. (2014). Inheritance is where physiology meets evolution. The Journal of Physiology, 592, 2307–2317.  https://doi.org/10.1113/jphysiol.2014.272096.CrossRefGoogle Scholar
  14. David, L., Ben-Harosh, Y., Stolovicki, E., Moore, L. S., Nguyen, M., Tamse, R., et al. (2013). Multiple genomic changes associated with reorganization of gene regulation and adaptation in yeast. Molecular Biology and Evolution, 30, 1514–1526.  https://doi.org/10.1093/molbev/mst071.CrossRefGoogle Scholar
  15. Dawkins, R. (1986). The blind watchmaker: Why the evidence of evolution reveals a universe without design. WW Norton & Company.Google Scholar
  16. de Vladar, H. P., Santos, M., & Szathmáry, E. (2017). Grand views of evolution. Trends in Ecology & Evolution, 32, 324–334.  https://doi.org/10.1016/j.tree.2017.01.008.
  17. Feigenbaum, M. J. (1980). The metric universal properties of period doubling bifurcations and the spectrum for a route to turbulence. Annals of the New York Academy of Sciences, 357, 330–336.CrossRefGoogle Scholar
  18. Forgacs, G., & Newman, S. A. (2005). Biological physics of the developing embryo. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Garson, J. (2016). A critical overview of biological functions. Berlin: Springer.CrossRefGoogle Scholar
  20. Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology: Integrating epigenetics, medicine, and evolution. Sunderland: Sinauer Associates.Google Scholar
  21. Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28, 344–362.CrossRefGoogle Scholar
  22. Gould, S. J. (2002). The structure of evolutionary theory. Harvard: Harvard University Press.Google Scholar
  23. Heams, T. (2014). Randomness in biology. Mathematical Structures in Computer Science, 24,  https://doi.org/10.1017/S096012951200076X.
  24. Holzer, G., & Laudet, V. (2015). Thyroid hormones: A triple-edged sword for life history transitions. Current Biology, 25, R344–R347.  https://doi.org/10.1016/j.cub.2015.02.026.CrossRefGoogle Scholar
  25. Hordijk, W., & Steel, M. (2017). Chasing the tail: The emergence of autocatalytic networks. Biosystems, 152, 1–10.  https://doi.org/10.1016/j.biosystems.2016.12.002.CrossRefGoogle Scholar
  26. Huang, S. (2009). Non-genetic heterogeneity of cells in development: More than just noise. Development, 136, 3853–3862.  https://doi.org/10.1242/dev.035139.CrossRefGoogle Scholar
  27. Karsenti, E. (2008). Self-organization in cell biology: A brief history. Nature Reviews Molecular Cell Biology, 9, 255–262.  https://doi.org/10.1038/nrm2357.CrossRefGoogle Scholar
  28. Kauffman, S. (1996). At home in the universe: The search for the laws of self-organization and complexity. Oxford: Oxford University Press.Google Scholar
  29. Kauffman, S. (2002). Investigations. USA: Oxford University Press.Google Scholar
  30. Kauffman, S. A. (2016). Humanity in a creative universe. Oxford: Oxford University Press.Google Scholar
  31. Koppl, R., Kauffman, S., Felin, T., & Longo, G. (2015). Economics for a creative world. Journal of Institutional Economics, 11, 1–31.  https://doi.org/10.1017/S1744137414000150.CrossRefGoogle Scholar
  32. Koutroufinis, S. (2014). Beyond systems theoretical explanations of an organism’s becoming: A process philosophical approach. In S. Koutroufinis (Ed.), In life and process (pp. 99–132). De Gruyter.  https://doi.org/10.1515/9783110352597.
  33. Koutroufinis, S. (2017). Organism, machine, process. Towards a process ontology for organismic dynamics. Organisms. Journal of Biological Sciences, 1, 23–44. http://ojs.uniroma1.it/index.php/Organisms/article/view/13878.
  34. Leibniz, G. W. (1991). De l’horizon de la doctrine humaine. Vrin. 1666.Google Scholar
  35. Lesne, A., & Victor, J.-M. (2006). Chromatin fiber functional organization: Some plausible models. The European Physical Journal E, 19, 279–290.  https://doi.org/10.1140/epje/i2005-10050-6.CrossRefGoogle Scholar
  36. Longo, G., & Montévil, M. (2013b). Extended criticality, phase spaces and enablement in biology. Chaos, Solitons & Fractals, pp. 64–79.  https://doi.org/10.1016/j.chaos.2013.03.008.
  37. Longo, G., & Montévil, M. (2014). Perspectives on organisms: Biological time, symmetries and singularities. Lecture notes in morphogenesis. Dordrecht: Springer.  https://doi.org/10.1007/978-3-642-35938-5.
  38. Longo, G., Montévil, M., & Kauffman, S. (2012). No entailing laws, but enablement in the evolution of the biosphere. In Genetic and evolutionary computation conference. New York, NY: ACM: GECCO’12.  https://doi.org/10.1145/2330784.2330946.
  39. Longo, G., & Montévil, M. (2011). From physics to biology by extending criticality and symmetry breakings. Progress in Biophysics and Molecular Biology, 106, 340–347.  https://doi.org/10.1016/j.pbiomolbio.2011.03.005.CrossRefGoogle Scholar
  40. Longo, G., & Montévil, M. (2013a). Extended criticality, phase spaces and enablement in biology. Chaos, Solitons & Fractals, 55, 64–79.  https://doi.org/10.1016/j.chaos.2013.03.008.CrossRefGoogle Scholar
  41. Longo, G., & Montévil, M. (2017). Comparing symmetries in models and simulations. In M. Dorato, L. Magnani, & T. Bertolotti (Eds.), Springer handbook of model-based science. NY: Springer.  https://doi.org/10.1007/978-3-319-30526-4.Google Scholar
  42. Loreto, V., Servedio, V. D. P., Strogatz, S. H., & Tria, F. (2016). Dynamics on expanding spaces: Modeling the emergence of novelties. In M. Degli Esposti, E. G. Altmann, & F. Pachet (Eds.), Creativity and Universality in Language (pp. 59–83). Cham: Springer.Google Scholar
  43. Mayr, E. (1963). Animal species and evolution (vol. 797). Belknap Press of Harvard University Press Cambridge, Massachusetts.Google Scholar
  44. Mazzola, G. (2012). The topos of music: Geometric logic of concepts, theory, and performance. Birkhäuser.Google Scholar
  45. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  46. Montévil, M., & Mossio, M. (2015). Biological organisation as closure of constraints. Journal of Theoretical Biology, 372, 179–191.  https://doi.org/10.1016/j.jtbi.2015.02.029.CrossRefGoogle Scholar
  47. Montévil, M., Mossio, M., Pocheville, A., & Longo, G. (2016). Theoretical principles for biology: Variation. Progress in Biophysics and Molecular Biology, 122, 36–50.  https://doi.org/10.1016/j.pbiomolbio.2016.08.005.CrossRefGoogle Scholar
  48. Moore, A. (2012). Life defined. BioEssays, 34, 253–254.  https://doi.org/10.1002/bies.201290011.CrossRefGoogle Scholar
  49. Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. The British Journal for the Philosophy of Science, 60, 813–841.  https://doi.org/10.1093/bjps/axp036.CrossRefGoogle Scholar
  50. Mossio, M., Montévil, M., & Longo, G. (2016). Theoretical principles for biology: Organization. Progress in Biophysics and Molecular Biology, 122, 24–35.  https://doi.org/10.1016/j.pbiomolbio.2016.07.005.CrossRefGoogle Scholar
  51. Muller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology and Systematics, pp. 229–256.  https://doi.org/10.1146/annurev.es.22.110191.001305.
  52. Neander, K. (1991). Functions as selected effects: The conceptual analyst’s defense. Philosophy of Science, 58, 168–184.  https://doi.org/10.1086/289610.CrossRefGoogle Scholar
  53. Pachet, F., & Roy, P. (2014). Imitative leadsheet generation with user constraints. In ECAI 2014 (pp. 1077–1078).  https://doi.org/10.3233/978-1-61499-419-0-1077.
  54. Paldi, A. (2003). Stochastic gene expression during cell differentiation: Order from disorder? Cellular and Molecular Life Sciences, 60, 1775–1779.CrossRefGoogle Scholar
  55. Papadopoulos, A., Roy, P., & Pachet, F. (2016). Assisted lead sheet composition using flowcomposer. In M. Rueher (Ed.), Principles and practice of constraint programming: 22nd International conference (pp. 769–785). Cham: Springer.  https://doi.org/10.1007/978-3-319-44953-1_48.CrossRefGoogle Scholar
  56. Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. Columbia U. P.Google Scholar
  57. Ruiz-Mirazo, K., Peretó, J., & Moreno, A. (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34, 323–346.  https://doi.org/10.1023/B:ORIG.0000016440.53346.dc.CrossRefGoogle Scholar
  58. Saetzler, K., Sonnenschein, C., & Soto, A. (2011). Systems biology beyond networks: Generating order from disorder through self-organization. Seminars in Cancer Biology, 21, 165–174.  https://doi.org/10.1016/j.semcancer.2011.04.004.CrossRefGoogle Scholar
  59. Soros, L., & Stanley, K. . O. (2014). Identifying necessary conditions for open-ended evolution through the artificial life world of chromaria. In ALIFE 14: The fourteenth conference on the synthesis and simulation of living systems, pp. 793–800.  https://doi.org/10.7551/978-0-262-32621-6-ch128.
  60. Stadler, B., Stadler, P., Wagner, G., & Fontana, W. (2001). The topology of the possible: Formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213, 241–274.  https://doi.org/10.1006/jtbi.2001.2423.CrossRefGoogle Scholar
  61. Stephan, A. (1999). Varieties of emergence. Evolution and Cognition, 5, 50–59.Google Scholar
  62. Tohme, M., Fini, J.-B., Laudet, V., & Demeneix, B. (2012). Chapter 8 small model organisms as tools in food safety research. In Hormone-disruptive chemical contaminants in food (pp. 136–153). The Royal Society of Chemistry.  https://doi.org/10.1039/9781849732970-00136.
  63. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
  64. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 237, 37–72.  https://doi.org/10.1098/rstb.1952.0012.CrossRefGoogle Scholar
  65. Varela, F., Maturana, H., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5, 187–196.  https://doi.org/10.1016/0303-2647(74)90031-8.CrossRefGoogle Scholar
  66. Wagner, G. P., & Lynch, V. J. (2010). Evolutionary novelties. Current Biology, 20, R48–R52.  https://doi.org/10.1016/j.cub.2009.11.010.CrossRefGoogle Scholar
  67. West, G., Brown, J., & Enquist, B. (1999). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 284, 1677–1679.  https://doi.org/10.1126/science.284.5420.1677.CrossRefGoogle Scholar
  68. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.Google Scholar
  69. Zhu, J., Zhang, Y.-T., Alber, M. S., & Newman, S. A. (2010). Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One, 5, 1–11.  https://doi.org/10.1371/journal.pone.0010892.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Matière et Systèmes Complexes - UMR 7057 (Université Paris 7 Diderot, CNRS)ParisFrance
  2. 2.IHPST (Paris 1 Panthson Sorbonne, CNRS, ÉNS) UMR 8590ParisFrance

Personalised recommendations