Advertisement

Synthese

, Volume 196, Issue 1, pp 221–237 | Cite as

A unified account of the conjunction fallacy by coherence

  • Martin L. Jönsson
  • Tomoji ShogenjiEmail author
Article
  • 81 Downloads

Abstract

We propose a coherence account of the conjunction fallacy applicable to both of its two paradigms (the M–A paradigm and the A–B paradigm). We compare our account with a recent proposal by Tentori et al. (J Exp Psychol Gen 142(1): 235–255, 2013) that attempts to generalize earlier confirmation accounts. Their model works better than its predecessors in some respects, but it exhibits only a shallow form of generality and is unsatisfactory in other ways as well: it is strained, complex, and untestable as it stands. Our coherence account inherits the strength of the confirmation account, but in addition to being applicable to both paradigms, it is natural, simple, and readily testable. It thus constitutes the next natural step for Bayesian theorizing about the conjunction fallacy.

Keywords

Conjunction fallacy M–A paradigm A–B paradigm Confirmation account Coherence account Coherence measure 

Notes

Acknowledgements

We would like to thank Stefan Schubert for feedback on an early version of this manuscript and anonymous referees of this journal for detailed comments and helpful suggestions.

References

  1. Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44(3), 211–233.CrossRefGoogle Scholar
  2. Bovens, L., & Hartmann, S. (2003). Bayesian epistemology. Oxford: Oxford University Press.Google Scholar
  3. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.Google Scholar
  4. Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press.Google Scholar
  5. Chisholm, R. (1966). Theory of knowledge. Englewood Cliffs NJ: Prentice Hall.Google Scholar
  6. Crupi, V., Fitelson, B., & Tentori, K. (2008). Probability, confirmation, and the conjunction fallacy. Thinking & Reasoning, 14(2), 182–199.CrossRefGoogle Scholar
  7. Douven, I., & Meijs, W. (2007). Measuring coherence. Synthese, 156(3), 405–425.CrossRefGoogle Scholar
  8. Fitelson, B. (2003). A probabilistic theory of coherence. Analysis, 63, 194–199.CrossRefGoogle Scholar
  9. Forster, M., & Sober, E. (1994). How to tell when simpler, more unified, or less ad hoc theories will provide more accurate predictions. British Journal for the Philosophy of Science, 45(1), 1–35.CrossRefGoogle Scholar
  10. Glass, D. H. (2002). Coherence, explanation and Bayesian networks. In M. O’Neal, R. F. E. Sutcliffe, C. Ryan, M. Eaton, & N. J. L. Griffith (Eds.), Artificial intelligence and cognitive science (pp. 177–182). New York: Springer.CrossRefGoogle Scholar
  11. Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman and Tversky. Psychological Review, 103, 592–596.CrossRefGoogle Scholar
  12. Jönsson, M. L., & Assarsson, E. (2016). A Problem for confirmation theoretic accounts of the conjunction fallacy. Philosophical Studies, 173(2), 437–449.CrossRefGoogle Scholar
  13. Jönsson, M. L., & Hampton, J. A. (2006). The inverse conjunction fallacy. Journal of Memory and Language, 33(5), 317–334.CrossRefGoogle Scholar
  14. Koehler, J. J. (1996). The base rate fallacy reconsidered: Descriptive, normative, and methodological challenges. Behavioral and Brain Sciences, 19(01), 1–17.CrossRefGoogle Scholar
  15. Koscholke, J. (2016). Evaluating test cases for probabilistic measures of coherence. Erkenntnis, 81(1), 155–181.CrossRefGoogle Scholar
  16. Koscholke, J., & Schippers, M. (2016). Against relative overlap measures of coherence. Synthese, 193, 2805–2814.CrossRefGoogle Scholar
  17. Lewis, C. I. (1946). An analysis of knowledge and valuation. La Salle IL: Open Court.Google Scholar
  18. Meijs, W. (2006). Coherence as generalized logical equivalence. Erkenntnis, 64(2), 231–252.CrossRefGoogle Scholar
  19. Olsson, E. J. (2002). What is the problem of coherence and truth? The Journal of Philosophy, 99(5), 246–272.CrossRefGoogle Scholar
  20. Olsson, E. J. (2005). Against coherence: Truth, probability, and justification. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Roche, W. (2013). Coherence and probability: A probabilistic account of coherence. In M. Araszkiewicz & J. Šavelka (Eds.), Coherence: Insights from philosophy (pp. 59–91). Jurisprudence and Artificial Intelligence New York: Springer.Google Scholar
  22. Roche, W., & Shogenji, T. (2014). Dwindling confirmation. Philosophy of Science, 81(1), 114–137.CrossRefGoogle Scholar
  23. Schippers, M. (2016). Competing accounts of contrastive coherence. Synthese, 193(10), 3383–3395.CrossRefGoogle Scholar
  24. Schupbach, J. N. (2011). New hope for Shogenji’s coherence measure. The British Journal for the Philosophy of Science, 62(1), 125–142.CrossRefGoogle Scholar
  25. Shafir, E., Smith, E. E., & Osherson, D. (1990). Typicality and reasoning fallacies. Memory & Cognition, 18(3), 229–239.CrossRefGoogle Scholar
  26. Shogenji, T. (1999). Is coherence truth conducive? Analysis, 59(264), 338–345.CrossRefGoogle Scholar
  27. Shogenji, T. (2012). The degree of epistemic justification and the conjunction fallacy. Synthese, 184(1), 29–48.CrossRefGoogle Scholar
  28. Sides, A., Osherson, D., Bonini, N., & Viale, R. (2002). On the reality of the conjunction fallacy. Memory & Cognition, 30(2), 191–198.CrossRefGoogle Scholar
  29. Siebel, M. (2002). There’s something about Linda: Probability, coherence and rationality. First salzburg workshop on paradigms of cognition, salzburg. http://www.uni-oldenburg.de/fileadmin/user_upload/philosophie/download/Mitarbeiter/Siebel/Siebel_Linda.pdf.
  30. Sober, E. (2015). Ockham’s razors: A user’s manual. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Tentori, K., Crupi, V., & Russo, S. (2013). On the determinants of the conjunction fallacy: Confirmation versus probability. Journal of Experimental Psychology: General, 142(1), 235–255.CrossRefGoogle Scholar
  32. Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12, 435–502.CrossRefGoogle Scholar
  33. Thagard, P. (1992). Conceptual revolutions. Princeton: Princeton University Press.Google Scholar
  34. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological review., 90(4), 293–315.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2017

Authors and Affiliations

  1. 1.Department of PhilosophyLund UniversityLundSweden
  2. 2.Department of PhilosophyRhode Island CollegeProvidenceUSA

Personalised recommendations