Synthese

, Volume 194, Issue 11, pp 4233–4249 | Cite as

On (not) defining cognition

S.I. : Cognition

Abstract

Should cognitive scientists be any more embarrassed about their lack of a discipline-fixing definition of cognition than biologists are about their inability to define “life”? My answer is “no”. Philosophers seeking a unique “mark of the cognitive” or less onerous but nevertheless categorical characterizations of cognition are working at a level of analysis upon which hangs nothing that either cognitive scientists or philosophers of cognitive science should care about. In contrast, I advocate a pluralistic stance towards uses of the term ‘cognition’ that eschews the urge to treat cognition as a metaphysically well-defined “natural” kind.

Keywords

Cognition Definition Animals Extended mind Group cognition Pluralism 

References

  1. Adams, F., & Aizawa, K. (2001). The bounds of cognition. Oxford: Wiley-Blackwell.Google Scholar
  2. Adams, F., & Garrison, R. (2013). The mark of the cognitive. Minds and Machines, 23(3), 339–352.CrossRefGoogle Scholar
  3. Allen, C., Grau, J. W., & Meagher, M. W. (2009). The lower bounds of cognition: What do spinal cords reveal? In J. Bickle (Ed.), The Oxford handbook of philosophy of neuroscience (pp. 129–142). Oxford: Oxford University Press.Google Scholar
  4. Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  5. Anderson, J. R. (1993). Problem solving and learning. American Psychologist, 48, 35–44.CrossRefGoogle Scholar
  6. Angelucci, A., Clasca, F., Bricolo, E., Cramer, K. S., & Sur, M. (1997). Experimentally induced retinal projections to the ferret auditory thalamus: Development of clustered eye-specific patterns in a novel target. The Journal of Neuroscience, 17, 2040–2055.Google Scholar
  7. Aizawa, K. (2015). Cognition and behavior. Synthese, 1–20. doi:10.1007/s11229-014-0645-5.
  8. Baker, M. D., & Stock, J. B. (2007). Signal transduction: Networks and integrated circuits in bacterial cognition. Current Biology, 17, R1021–R1024.CrossRefGoogle Scholar
  9. Beer, R. D., & Williams, P. L. (2015). Information processing and dynamics in minimally cognitive systems. Cognitive Science, 1, 1–38.CrossRefGoogle Scholar
  10. Boag, Z. (2014). Interview of John Searle. New Philosopher Magazine (2). January 25, 2014. Retrieved from August 4, 2015. http://www.newphilosopher.com/articles/john-searle-it-upsets-me-when-i-read-the-nonsense-written-by-my-contemporaries/.
  11. Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127–148.CrossRefGoogle Scholar
  12. Buckner, C. (2015). A property cluster theory of cognition. Philosophical Psychology, 28, 307–336. doi:10.1080/09515089.2013.843274.CrossRefGoogle Scholar
  13. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  14. Chemero, A., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75, 1–27.CrossRefGoogle Scholar
  15. Clark, A. (2010). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.Google Scholar
  16. Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58, 10–23.CrossRefGoogle Scholar
  17. Cleland, C. E. (2012). Life without definitions. Synthese, 185(1), 125–144.CrossRefGoogle Scholar
  18. Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.CrossRefGoogle Scholar
  19. Dretske, F. I. (1981). Knowledge and the flow of information. Cambridge, MA: The MIT Press.Google Scholar
  20. Figdor, C. (2014). On the proper domain of psychological predicates. Synthese, 1–22. doi:10.1007/s11229-014-0603-2.
  21. Firestone, C., & Scholl, B. J. (2015). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects. Behavioral and Brain Sciences, 39, 1–77.Google Scholar
  22. Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR–LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.CrossRefGoogle Scholar
  23. Garzón, P. C., & Keijzer, F. (2011). Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive Behavior, 19, 155–171.CrossRefGoogle Scholar
  24. Hartmann, S. (1999). Models and stories in hadron physics. In M. S. Morgan & M. Morrison (Eds.), Models as mediators. Ideas in context (pp. 326–346). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Hills, T. T. (2003). Toward a unified theory of animal event timing. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 77–111). Boca Raton, FL: CRC Press.Google Scholar
  26. Hills, T. T., Todd, P. M., & Goldstone, R. L. (2008). Search in external and internal spaces evidence for generalized cognitive search processes. Psychological Science, 19(8), 802–808.CrossRefGoogle Scholar
  27. Hochner, B., Shomrat, T., & Fiorito, G. (2006). The octopus: A model for a comparative analysis of the evolution of learning and memory mechanisms. The Biological Bulletin, 210, 308–317.CrossRefGoogle Scholar
  28. Iyer, L. M., Aravind, L., Coon, S. L., Klein, D. C., & Koonin, E. V. (2004). Evolution of cell-cell signaling in animals: Did late horizontal gene transfer from bacteria have a role? Trends in Genetics, 20, 292–299.CrossRefGoogle Scholar
  29. Izquierdo, E. J., & Beer, R. D. (2013). Connecting a connectome to behavior: An ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS Computational Biology, 9(2), e1002890. doi:10.1371/journal.pcbi.1002890.CrossRefGoogle Scholar
  30. Kuryatov, A., Laube, B., Betz, H., & Kuhse, J. (1994). Mutational analysis of the glycine-binding site of the NMDA receptor: Structural similarity with bacterial amino acid-binding proteins. Neuron, 12, 1291–1300.CrossRefGoogle Scholar
  31. Luce, R. D. (2003). Whatever happened to information theory in psychology? Review of General Psychology, 7(2), 183–188.CrossRefGoogle Scholar
  32. Ludwig, K. (1996). Singular thought and the Cartesian theory of mind. Nous, 30(4), 434–460.CrossRefGoogle Scholar
  33. Ludwig, K. (2015). Is distributed cognition group level cognition? Journal of Social Ontology, 1(2), 189–224.Google Scholar
  34. Machery, E. (2012). Why I stopped worrying about the definition of life.. and why you should as well. Synthese, 185(1), 145–164. doi:10.1007/s11229-011-9880-1.CrossRefGoogle Scholar
  35. Macnab, R., & Koshland, D. (1972). The gradient-sensing mechanism in bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 69, 2509–2512.CrossRefGoogle Scholar
  36. Nakagaki, T., Kobayashi, R., Nishiura, Y., & Ueda, T. (2004). Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proceedings of Biological Science, 271, 2305–2310.CrossRefGoogle Scholar
  37. Newman, M. (2010). Networks: An introduction. New York: Oxford University Press.CrossRefGoogle Scholar
  38. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  39. Newton, J. R., & Sur, M. (2005). Rewiring cortex functional visual plasticity in the auditory cortex during development. In J. Syka & M. M. Merzenich (Eds.), Plasticity of the central auditory system and processing of complex acoustic signals (pp. 127–138). New York: Springer.Google Scholar
  40. Paoletti, P., & Neyton, J. (2007). NMDA receptor subunits: Function and pharmacology. Current Opinion in Pharmacology, 7(1), 39–47.CrossRefGoogle Scholar
  41. Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38. doi:10.1007/s10867-010-9195-3.CrossRefGoogle Scholar
  42. Polger, T. W., & Shapiro, L. A. (2016). The multiple realization book. New York: Oxford University Press.CrossRefGoogle Scholar
  43. Ramsey, W. D. (2007). Representation reconsidered. Cambridge University Press.Google Scholar
  44. Ramsey, W. D. (2015). Must cognition be representational? Synthese, 1–18. doi:10.1007/s11229-014-0644-6.
  45. Reid, C. R., Latty, T., Dussutour, A., & Beekman, M. (2012). Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proceedings of the National Academy of Sciences, 109(43), 17490–17494.CrossRefGoogle Scholar
  46. Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43(3), 151.CrossRefGoogle Scholar
  47. Rowlands, M. (2010). The new science of the mind: From extended mind to embodied phenomenology. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  48. Rozenblit, L., & Keil, F. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 26, 521–562.CrossRefGoogle Scholar
  49. Rupert, R. (2011). Review of Mark Rowlands, The new science of the mind: From extended mind to embodied phenomenology.Notre Dame Philosophical Reviews, 2011-03-35. Retrieved from Auguest 3, 2015. https://ndpr.nd.edu/news/24671-the-new-science-of-the-mind-from-extended-mind-to-embodied-phenomenology/.
  50. Searle, J. (1992). The rediscovery of mind. Cambridge, MA: MIT Press.Google Scholar
  51. Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., & Marshall, J. A. R. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335, 108–111.CrossRefGoogle Scholar
  52. Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379-423–623-656.CrossRefGoogle Scholar
  53. Shannon, C. E. (1956). The bandwagon. IRE Transactions-Information Theory, 2(1), 3.CrossRefGoogle Scholar
  54. Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation module in auditory cortex. Nature, 404, 841–847.CrossRefGoogle Scholar
  55. Simon, H. A., & Newell, A. (1970). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159.CrossRefGoogle Scholar
  56. Sporns, O. (2012). Networks of the brain: Discovering the human connectome. Cambridge, MA: The MIT Press.Google Scholar
  57. Srinivasan, M. V. (2010). Honey bees as a model for vision, perception, and cognition. Annual Review of Entomology, 55, 267–284.CrossRefGoogle Scholar
  58. Stotz, K., & Allen, C. (2011). From cell-surface receptors to higher learning: A whole world of experience. In K. S. Plaisance & T. A. C. Reydon (Eds.), Philosophy of behavioral biology, Boston studies in the philosophy of science (pp. 85–123). Berlin: Springer.Google Scholar
  59. Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive Systems Research, 11(4), 378–395.CrossRefGoogle Scholar
  60. van Fraassen, B. (2002). The empirical stance. New Haven, CT: Yale University Press.Google Scholar
  61. Villareal, L. (2004). Are viruses alive? Scientific American, 291(6), 96–102.CrossRefGoogle Scholar
  62. Wimsatt, W. C. (1986). Forms of aggregativity. In M. G. Grene, A. Donagan, A. N. Perovich, & M. V. Wedin (Eds.), Human nature and natural knowledge (pp. 259–291). Dordrecht: Reidel.CrossRefGoogle Scholar
  63. Wolf, D. M., Fontaine-Bodin, L., Bischofs, I., Price, G., Keasling, J., & Arkin, A. P. (2008). Memory in microbes: Quantifying history-dependent behavior in a bacterium. PLoS ONE, 3, e1700. doi:10.1371/journal.pone.0001700.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyXi’an Jiatong UniversityXi’anChina
  2. 2.Department of History and Philosophy of ScienceIndiana UniversityBloomingtonUSA
  3. 3.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations