Advertisement

Synthese

pp 1–29 | Cite as

Market crashes as critical phenomena? Explanation, idealization, and universality in econophysics

  • Jennifer Jhun
  • Patricia Palacios
  • James Owen Weatherall
Article

Abstract

We study the Johansen–Ledoit–Sornette (JLS) model of financial market crashes (Johansen et al. in Int J Theor Appl Financ 3(2):219–255, 2000). On our view, the JLS model is a curious case from the perspective of the recent philosophy of science literature, as it is naturally construed as a “minimal model” in the sense of Batterman and Rice (Philos Sci 81(3):349–376, 2014) that nonetheless provides a causal explanation of market crashes, in the sense of Woodward’s interventionist account of causation (Woodward in Making things happen: a theory of causal explanation. Oxford University Press, Oxford, 2003).

Keywords

Johansen–Ledoit–Sornette model Econophysics Renormalization group Minimal models Explanation Universality Infinite idealization 

Notes

Acknowledgements

This paper is partially based upon work supported by the National Science Foundation under Grant No. 1328172. Previous versions of this work have been presented at the at a workshop on the Physics of Society and a conference on Infinite Idealizations, both hosted by the Munich Center for Mathematical Philosophy; we are grateful to the audiences and organizers for helpful feedback. We are also grateful to Didier Sornette for helpful discussions concerning his work and for detailed feedback on a previous draft of the paper, to Alexander Reutlinger for detailed comments on an earlier draft, and to two anonymous referees for their helpful comments.

References

  1. Allen, F., & Gorton, G. (1993). Churning bubbles. The Review of Economic Studies, 60(4), 813–836.  https://doi.org/10.2307/2298101.CrossRefGoogle Scholar
  2. Arnéodo, A., Muzy, J.-F., & Sornette, D. (1998). “Direct” causal cascade in the stock market. The European Physical Journal B—Condensed Matter and Complex Systems, 2(2), 27782.  https://doi.org/10.1007/s100510050250.
  3. Bachelier, L., & Samuelson, P. A. (2011). Louis Bachelier’s theory of speculation: The origins of modern finance. Translated by Mark Davis and Alison Etheridge. Princeton: Princeton University Press.Google Scholar
  4. Ball, R. (2009). The global financial crisis and the efficient market hypothesis: What have we learned? Journal of Applied Corporate Finance, 21(4), 8–16.  https://doi.org/10.1111/j.1745-6622.2009.00246.x.CrossRefGoogle Scholar
  5. Barenblatt, G. I., & Zel’dovich, Y. B. (1972). Self-similar solutions as intermediate asymptotics. Annual Review of Fluid Mechanics, 4(1), 285–312.  https://doi.org/10.1146/annurev.fl.04.010172.001441.CrossRefGoogle Scholar
  6. Batterman, R. W. (2000). Multiple realizability and universality. The British Journal for the Philosophy of Science, 51(1), 115–145.  https://doi.org/10.1093/bjps/51.1.115.CrossRefGoogle Scholar
  7. Batterman, R. W. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford: Oxford University Press.Google Scholar
  8. Batterman, R. W. (2005). Critical phenomena and breaking drops: Infinite idealizations in physics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 36(2), 225–244.  https://doi.org/10.1016/j.shpsb.2004.05.004.CrossRefGoogle Scholar
  9. Batterman, R. W. (2009). Idealization and modeling. Synthese, 169(3), 427–446.CrossRefGoogle Scholar
  10. Batterman, R. W., & Rice, C. C. (2014). Minimal model explanations. Philosophy of Science, 81(3), 349–376.CrossRefGoogle Scholar
  11. Black, F. (1986). Noise. The Journal of Finance, 41(3), 528–543.  https://doi.org/10.1111/j.1540-6261.1986.tb04513.x.CrossRefGoogle Scholar
  12. Blanchard, O. J. (1979). Speculative bubbles, crashes and rational expectations. Economics Letters, 3(4), 387–389.  https://doi.org/10.1016/0165-1765(79)90017-X.CrossRefGoogle Scholar
  13. Blanchard, O. J., & Watson, M. W. (1982). Bubbles, rational expectations and financial markets. Working Paper 945. National Bureau of Economic Research. http://www.nber.org/papers/w0945.
  14. Bothmer, H. C. G. V., & Meister, C. (2003). Predicting critical crashes? A new restriction for the free variables. Physica A: Statistical Mechanics and Its Applications, 320(March), 53947.  https://doi.org/10.1016/S0378-4371(02)01535-2.Google Scholar
  15. Butterfield, J. (2011). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41(6), 1065–1135.  https://doi.org/10.1007/s10701-010-9516-1.CrossRefGoogle Scholar
  16. Butterfield, J., & Bouatta, N. (December 2015). Renormalization for philosophers. 437–85.  https://doi.org/10.1163/9789004310827_018.
  17. Calvet, L. E., & Fisher, A. J. (2008). Multifractal volatility: Theory, forecasting, and pricing. Amsterdam; Boston: Academic Press.Google Scholar
  18. Cardy, J. (1996). Scaling and renormalization in statistical physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Cleves, M., Gould, W. W., & Gutierrez, R. (2004). An introduction to survival analysis using stata (Revised ed.). Oxford: Taylor & Francis.Google Scholar
  20. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. http://www.tandfonline.com/doi/abs/10.1080/713665670.
  21. Cottrell, A. F., Cockshott, P., Michaelson, G. J., Wright, I. P., & Yakovenko, V. (2009). Classical econophysics. Abingdon: Routledge.Google Scholar
  22. Cowles, A. (1933). Can stock market forecasters forecast? Econometrica, 1(3), 309.  https://doi.org/10.2307/1907042.CrossRefGoogle Scholar
  23. Craver, C. F. (2006). When mechanistic models explain. Synthese, 153(3), 355–376.  https://doi.org/10.1007/s11229-006-9097-x.CrossRefGoogle Scholar
  24. Earman, J. (2004). Curie’s principle and spontaneous symmetry breaking. International Studies in the Philosophy of Science, 18(2–3), 173–198.  https://doi.org/10.1080/0269859042000311299.CrossRefGoogle Scholar
  25. Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38(1), 34–105.CrossRefGoogle Scholar
  26. Fisher, M. E. (1998). Renormalization group theory: Its basis and formulation in statistical physics. Reviews of Modern Physics, 70(2), 653.Google Scholar
  27. Franklin, A. (2017). On the renormalisation group explanation of universality. Philosophy of Science. http://philsci-archive.pitt.edu/12654/.
  28. Gallegati, M., Keen, S., Lux, T., & Ormerod, P. (2006). Worrying trends in econophysics. Physica A: Statistical Mechanics and Its Applications, 370(1), 1–6.  https://doi.org/10.1016/j.physa.2006.04.029.CrossRefGoogle Scholar
  29. Gluzman, S., & Sornette, D. (2002). Log-periodic route to fractal functions. Physical Review E, 65(3), 036142.  https://doi.org/10.1103/PhysRevE.65.036142.CrossRefGoogle Scholar
  30. Goldenfeld, N. (1992). Lectures on phase transitions and the renormalization group. Boulder: Westview Press.Google Scholar
  31. Goldstein, M. A., & Kavajecz, K. A. (2004). Trading strategies during circuit breakers and extreme market movements. Journal of Financial Markets, 7(3), 301–333.  https://doi.org/10.1016/j.finmar.2003.11.003.CrossRefGoogle Scholar
  32. Griffiths, R. B., & Kaufman, M. (1982). Spin systems on hierarchical lattices. Introduction and thermodynamic limit. Physical Review B, 26(9), 5022.CrossRefGoogle Scholar
  33. Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack vulnerability of complex networks. Physical Review E, 65(5), 056109.  https://doi.org/10.1103/PhysRevE.65.056109.CrossRefGoogle Scholar
  34. Ilinski, K. (1999). Critical crashes? International Journal of Modern Physics C, 10(04), 741–746.  https://doi.org/10.1142/S0129183199000553.CrossRefGoogle Scholar
  35. Johansen, A., Ledoit, O., & Sornette, D. (2000). Crashes as critical points. International Journal of Theoretical and Applied Finance, 03(02), 219–255.  https://doi.org/10.1142/S0219024900000115.CrossRefGoogle Scholar
  36. Johansen, A., Sornette, D., & Ledoit, O. (1999). Predicting financial crashes using discrete scale invariance. Journal of Risk, 1(4), 5–32.  https://doi.org/10.21314/JOR.1999.01.4.CrossRefGoogle Scholar
  37. Joshi, M. S. (2008). The concepts and practice of mathematical finance (2nd ed.). Cambridge; New York: Cambridge University Press.Google Scholar
  38. Kadanoff, L. P. (2000). Statistical physics: Statics, dynamics and renormalization. Singapore: World Scientific.CrossRefGoogle Scholar
  39. Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183(3), 339.  https://doi.org/10.1007/s11229-011-9970-0.CrossRefGoogle Scholar
  40. Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science, 78(4), 60127.  https://doi.org/10.1086/661755.CrossRefGoogle Scholar
  41. Kendall, M. G. (1953). The analysis of economic time-series-part I: Prices. Journal of the Royal Statistical Society. Series A (General), 116(1), 11.  https://doi.org/10.2307/2980947.CrossRefGoogle Scholar
  42. Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315–1335.  https://doi.org/10.2307/1913210.CrossRefGoogle Scholar
  43. Lange, M. (2015). On ‘minimal model explanations’: A reply to Batterman and Rice. Philosophy of Science, 82(2), 292–305.CrossRefGoogle Scholar
  44. Leiss, M., Nax, H. H., & Sornette, D. (2015). Super-exponential growth expectations and the global financial crisis. Journal of Economic Dynamics and Control, 55(June), 1–13.  https://doi.org/10.1016/j.jedc.2015.03.005.CrossRefGoogle Scholar
  45. Lo, A. W., & Mueller, M. T. (2010). Warning: Physics envy may be hazardous to your wealth! SSRN Scholarly Paper ID 1563882. Rochester, NY: Social Science Research Network. https://papers.ssrn.com/abstract=1563882.
  46. Malkiel, B. G., and Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383–417.Google Scholar
  47. Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36(4), 394–419.CrossRefGoogle Scholar
  48. Mandelbrot, B., & Hudson, R. L. (2004). The misbehavior of markets: A fractal view of risk. Profile: Ruin and Reward.Google Scholar
  49. Mantegna, R. N., & Stanley, H. E. (1999). Introduction to econophysics: Correlations and complexity in finance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  50. McCauley, J. L. (2004). Dynamics of markets: Econophysics and finance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. McCauley, J. L. (2006). Response to ‘worrying trends in econophysics’. Physica A: Statistical Mechanics and Its Applications, 371(2), 601–609.CrossRefGoogle Scholar
  52. Melrose, J. R. (1983). Hierarchical lattices: Some examples with a comparison of intrinsic dimension and connectivity and ising model exponents. Journal of Physics A: Mathematical and General, 16(13), 3077.CrossRefGoogle Scholar
  53. Morrison, M. (2006). Emergence, reduction, and theoretical principles: Rethinking fundamentalism. Philosophy of Science, 73(5), 876–887.CrossRefGoogle Scholar
  54. NYSE: NYSE Trading Information. (2016). Accessed October 25. https://www.nyse.com/markets/nyse/trading-info.
  55. Oatley, T., Kindred Winecoff, W., Pennock, A., & Danzman, S. B. (2013). The political economy of global finance: A network model. Perspectives on Politics, 11(1), 133–153.  https://doi.org/10.1017/S1537592712003593.CrossRefGoogle Scholar
  56. O’Connor, C., & Weatherall, J. O. (2016). Black holes, black-scholes, and prairie voles: An essay review of simulation and similarity, by Michael Weisberg. Philosophy of Science, 83(4), 613–626.  https://doi.org/10.1086/687265.CrossRefGoogle Scholar
  57. Osborne, M. F. M. (1959). Brownian motion in the stock market. Operations Research, 7(2), 145–173.  https://doi.org/10.1287/opre.7.2.145.CrossRefGoogle Scholar
  58. Pisani, B. (2013). New trading curbs: Limit up, limit down is finally here. CNBC. April 4. http://www.cnbc.com/id/100617758.
  59. Reutlinger, A. (2014). Why is there universal macrobehavior? Renormalization group explanation as noncausal explanation. Philosophy of Science, 81(5), 1157–1170.CrossRefGoogle Scholar
  60. Rickles, D. (2007). Econophysics for philosophers. Studies in History and Philosophy of Science Part B, 38(4), 948–978.CrossRefGoogle Scholar
  61. Rosser, J. B, Jr. (2008). Debating the role of econophysics. Nonlinear Dynamics, Psychology, and Life Sciences, 12(3), 311–323.Google Scholar
  62. Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.Google Scholar
  63. Samuelson, P. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, 6(2), 41–49.Google Scholar
  64. Santos, M. S., & Woodford, M. (1997). Rational asset pricing bubbles. Econometrica, 65(1), 19–57.  https://doi.org/10.2307/2171812.CrossRefGoogle Scholar
  65. Shiller, R. (1984). Stock prices and social dynamics. Brookings Papers on Economic Activity, 15(2), 457–510.CrossRefGoogle Scholar
  66. Sornette, D. (1998). Discrete-scale invariance and complex dimensions. Physics Reports, 297(5), 239–270.CrossRefGoogle Scholar
  67. Sornette, D. (2003). Why stock markets crash: Critical events in complex financial systems. Princeton: Princeton University Press.Google Scholar
  68. Sornette, D. (2006). Critical phenomena in natural sciences: Chaos fractals, selforganization and disorder: Concepts and tools. Berlin: Springer.Google Scholar
  69. Sornette, D., & Cauwels, P. (2015a). Managing risk in a creepy world. Journal of Risk Management in Financial Institutions, 8(1), 83–108.CrossRefGoogle Scholar
  70. Sornette, D. (2015b). Financial bubbles: Mechanisms and diagnostics. Review of Behavioral Economics, 2(3), 279–305.  https://doi.org/10.1561/105.00000035.CrossRefGoogle Scholar
  71. Sornette, D., Demos, G., Zhang, Q., Cauwels, P., Filimonov, V., & Zhang, Q. (2015). Real-time prediction and post-mortem analysis of the Shanghai 2015 stock market bubble and crash. Journal of Investment Strategies, 4(4), 77–95.CrossRefGoogle Scholar
  72. Sornette, D., & Johansen, A. (1997). Large financial crashes. Physica A: Statistical Mechanics and Its Applications, 245(3), 411–422.  https://doi.org/10.1016/S0378-4371(97)00318-X.CrossRefGoogle Scholar
  73. Sornette, D., Johansen, A., & Bouchaud, J.-P. (1996). Stock market crashes, precursors and replicas. Journal de Physique I, 6(January), 167–175.  https://doi.org/10.1051/jp1:1996135.CrossRefGoogle Scholar
  74. Sornette, D., & Malevergne, Y. (2001). From rational bubbles to crashes. Physica A: Statistical Mechanics and Its Applications, Application of Physics in Economic Modelling, 299(1–2), 40–59.  https://doi.org/10.1016/S0378-4371(01)00281-3.CrossRefGoogle Scholar
  75. Sornette, D., Woodard, R., Yan, W., & Zhou, W.-X. (2013). Clarifications to questions and criticisms on the Johansen-Ledoit-Sornette financial bubble model. Physica A: Statistical Mechanics and Its Applications, 392(19), 4417–4428.  https://doi.org/10.1016/j.physa.2013.05.011.CrossRefGoogle Scholar
  76. Strevens, M. (2008). Depth: An account of scientific explanation. Cambridge: Harvard University Press.Google Scholar
  77. Thébault, K., Bradley, S., & Reutlinger, A. (2017). Modelling inequality. The British Journal for the Philosophy of Science, axw028,  https://doi.org/10.1093/bjps/axw028.
  78. Van Fraassen, B. C. (1980). The scientific image. Wotton-under-Edge: Clarendon Press.CrossRefGoogle Scholar
  79. Weatherall, J. O. (2011). On (some) explanations in physics. Philosophy of Science, 78(3), 421–447.  https://doi.org/10.1086/660737.CrossRefGoogle Scholar
  80. Weatherall, J. O. (2013). The physics of wall street: A brief history of predicting the unpredictable. Boston, MA: Houghton Mifflin Harcourt.Google Scholar
  81. Weatherall, J. O. (2017). Inertial motion, explanation, and the foundations of classical spacetime theories. In D. Lehmkuhl, G. Schiemann & E. Scholz (Eds.), Towards a theory of spacetime theories. Einstein Studies 13. Boston, MA: Birkhauser. http://arxiv.org/abs/1206.2980.
  82. Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639–659.CrossRefGoogle Scholar
  83. Weisberg, M. (2012). Simulation and similarity: Using models to understand the world. Oxford: Oxford University Press.Google Scholar
  84. Wilson, K. G., & Kogut, J. (1974). The renormalization group and the \(\epsilon \) expansion. Physics Reports, 12(2), 75–199.  https://doi.org/10.1016/0370-1573(74)90023-4.CrossRefGoogle Scholar
  85. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  86. Yalamova, R., & McKelvey, B. (2011). Explaining what leads up to stock market crashes: A phase transition model and scalability dynamics. Journal of Behavioral Finance, 12(3), 169–182.  https://doi.org/10.1080/15427560.2011.602484.CrossRefGoogle Scholar
  87. Zhou, W.-X., Sornette, D., Hill, R. A., & Dunbar, R. I. M. (2005). Discrete hierarchical organization of social group sizes. Proceedings of the Royal Society of London B: Biological Sciences, 272(1561), 439–444.  https://doi.org/10.1098/rspb.2004.2970.CrossRefGoogle Scholar
  88. Zinn-Justin, J. (2007). Phase transitions and renormalization group. Oxford: OUP Oxford.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyLake Forest CollegeLake ForestUSA
  2. 2.Munich Center for Mathematical PhilosophyLudwig-Maximilians Universität MünchenMunichGermany
  3. 3.Department of Logic and Philosophy of ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations