Advertisement

Synthese

, Volume 194, Issue 9, pp 3245–3265 | Cite as

Predictive success, partial truth and Duhemian realism

  • Gauvain Leconte
S.I.: New Thinking about Scientific Realism

Abstract

According to a defense of scientific realism known as the “divide et impera move”, mature scientific theories enjoying predictive success are partially true. This paper investigates a paradigmatic historical case: the prediction, based on Fresnel’s wave theory of light, that a bright spot should figure in the shadow of a disc. Two different derivations of this prediction have been given by both Poisson and Fresnel. I argue that the details of these derivations highlight two problems of indispensability arguments, which state that only the indispensable constituents of this success are worthy of belief and retained through theory-change. The first problem is that, contrary to a common claim, Fresnel’s integrals are not needed to predict the bright spot phenomenon. The second problem is that the hypotheses shared by to these two derivations include problematic idealizations. I claim that this example leads us to be skeptical about which aspects of our current theories are worthy of belief.

Keywords

Scientific realism Partial truth Novel prediction Fresnel’s bright spot prediction Divide et impera move Pierre Duhem 

Notes

Acknowledgements

I would like to thank Kevin Buton-Maquet, Gladys Kostyrka, Timothy Lyons, Peter Vickers, Pierre Wagner, two anonymous reviewers, the organizers of the conference New Thinking on Scientific Realism and the organizers of the conference Scientific Realism and The Challenge from the History of Science for their precious advice and comments.

References

  1. Alai, M. (2014). Novel predictions and the no miracle argument. Erkenntnis, 79(2), 297–326.CrossRefGoogle Scholar
  2. Alpher, R., & Herman, R. (1948). Evolution of the universe. Nature, 162, 774–775.CrossRefGoogle Scholar
  3. Batterman, R. (2010). On the explanatory role of mathematics in empirical science. The British Journal for the Philosophy of Science, 61(1), 1–25.CrossRefGoogle Scholar
  4. Biot, J.-B. (1816). Traité de physique expérimentale et mathématique (Vol. 4). Paris: Deterville.Google Scholar
  5. Bokulich, A. (2012). Distinguishing explanatory from nonexplanatory fictions. Philosophy of Science, 79(5), 725–737.CrossRefGoogle Scholar
  6. Cartwright, N., & Jones, M. R. (2005). Idealization XII: Correcting the model. Amsterdam: Rodopi: Idealization and Abstraction in the Sciences.Google Scholar
  7. Chakravartty, A. (2007). A metaphysics for scientific realism: Knowing the unobservable. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. de Sitter, W. (1917). On the curvature of space. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, 20, 229–243.Google Scholar
  9. Descartes, R. (1644). Principia philosophiae. Amsterdam: Ludovicum Elzevirium.Google Scholar
  10. Dicke, R., Peebles, J., Roll, P., & Wilkinson, D. (1965). Cosmic black-body radiation. The Astrophysical Journal, 142, 414–419.CrossRefGoogle Scholar
  11. Duhem, P. (1914). La Théorie physique: son objet, sa structure. Paris: Vrin.Google Scholar
  12. Fresnel, A. (1866). Œuvres complètes d’Augustin Fresnel. Paris: Imprimerie Impériale.Google Scholar
  13. Harvey, J. E., & Forgham, J. L. (1984). The spot of arago: New relevance for an old phenomenon. American Journal of Physics, 52(3), 243–247.CrossRefGoogle Scholar
  14. Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Science, 15, 168–173.CrossRefGoogle Scholar
  15. Kirchhoff, G. (1883). Zur Theorie der Lichtstrahlen. Annalen der Physik, 254(4), 663–695.CrossRefGoogle Scholar
  16. Kragh, H., & Smith, R. (2003). Who discovered the expanding universe? History of Science, 41, 141–162.CrossRefGoogle Scholar
  17. Laudan, L. (1981). A confutation of convergent realism. Philosophy of Science, 48(1), 19–49.CrossRefGoogle Scholar
  18. Laymon, R. (1982). Scientific realism and the hierarchical counterfactual path from data to theory. In PSA: proceedings of the biennial meeting of the Philosophy of Science Association, pp. 107–121.Google Scholar
  19. Lemaître, G. (1927). Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société scientifique de Bruxelles, série A, 47, 49–59.Google Scholar
  20. Leplin, J. (1997). A novel defense of scientific realism. Oxford: Oxford University Press.Google Scholar
  21. Lyons, T. D. (2002). Scientific realism and the pessimistic meta-modus tollens. In S. Clarke & T. D. Lyons (Eds.), Recent themes in the philosophy of science: Scientific realism and commonsense (pp. 63–90). Dordrecht: Springer.CrossRefGoogle Scholar
  22. Mäki, U. (2011). The truth of false idealizations in modeling. In P. Humphreys & C. Imbert (Eds.), Models, simulations, and representations (pp. 216–233). New York: Routledge.Google Scholar
  23. McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science Part A, 16(3), 247–273.CrossRefGoogle Scholar
  24. Moeller, K. (2007). Optics: Learning by computing, with examples using maple, mathcad, matlab, mathematica, and maple. Undergraduate texts in contemporary physics. New York: Springer.Google Scholar
  25. Musgrave, A. (1974). Logical versus historical theories of confirmation. British Journal for the Philosophy of Science, 25(1), 1–23.CrossRefGoogle Scholar
  26. Musgrave, A. (1988). The ultimate argument for scientific realism. In R. Nola (Ed.), Relativism and realism in science (pp. 229–252). New York: Springer.CrossRefGoogle Scholar
  27. Psillos, S. (1999). Scientific realism: How science tracks truth. New York: Routledge.Google Scholar
  28. Psillos, S. (2011). Living with the abstract: realism and models. Synthese, 180(1), 3–17.CrossRefGoogle Scholar
  29. Putnam, H. (1975). Philosophical papers: Mathematics, matter and method. Cambridge: CUP Archive.Google Scholar
  30. Saatsi, J. (2005). Reconsidering the Fresnel–Maxwell theory shift: How the realist can have her cake and EAT it too. Studies in History and Philosophy of Science Part A, 36(3), 509–538.CrossRefGoogle Scholar
  31. Saatsi, J. (2015). Historical inductions, old and new. Synthese. doi: 10.1007/s11229-015-0855-5.
  32. Saatsi, J., & Vickers, P. (2011). Miraculous success? Inconsistency and untruth in Kirchhoff’s diffraction theory. The British Journal for the Philosophy of Science, 62(1), 29–46.CrossRefGoogle Scholar
  33. Smart, J. J. (1968). Between science and philosophy: An introduction to the philosophy of science. New York: Random House.Google Scholar
  34. Vickers, P. (2013). A confrontation of convergent realism. Philosophy of Science, 80(2), 189–211.CrossRefGoogle Scholar
  35. Worrall, J. (1989a). Fresnel, Poisson and the white spot: The role of successful predictions in the acceptance of scientific theories. In D. Gooding, T. Pinch, & S. Schaffer (Eds.), The uses of experiment, studies in the natural sciences (pp. 135–157). Cambridge: Cambridge University Press.Google Scholar
  36. Worrall, J. (1989b). Structural realism: The best of both worlds? Dialectica, 43(2), 99–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.IHPST - UMR 8590ParisFrance
  2. 2.Université Paris 1 Panthéon-Sorbonne - UFR 10Paris Cedex 05France

Personalised recommendations