Advertisement

Synthese

, Volume 195, Issue 4, pp 1487–1508 | Cite as

Anchoring in ecosystemic kinds

  • Matthew H. Slater
S.I.: Causation in Metaphysics
  • 271 Downloads

Abstract

The world contains many different types of ecosystems. This is something of a commonplace in biology and conservation science. But there has been little attention to the question of whether such ecosystem types enjoy a degree of objectivity—whether they might be natural kinds. I argue that traditional accounts of natural kinds that emphasize nomic or causal–mechanistic dimensions of “kindhood” are ill-equipped to accommodate presumptive ecosystemic kinds. In particular, unlike many other kinds, ecosystemic kinds are “anchored” to the contingent character of species and higher taxa and their abiotic environments. Drawing on Slater (Br J Philos Sci 66(2):375–411, 2015a), I show how we can nevertheless make room for such contingent anchoring in an account of natural kinds of ecosystems kinds.

Keywords

Ecosystems Natural kinds HPC kinds SPC kinds Laws Stability 

Notes

Acknowledgements

Thanks to audiences at the IHPST workshop on “Causation and Metaphysics” organized by Andrew McFarland (particularly Andrew, P.D. Magnus, Thomas Reydon) and at POBAM2014 (particularly Matt Barker, Matt Haber, Roberta Millstein, Elliott Sober, and Joel Velasco) for helpful suggestions. Thanks also to two anonymous referees for Synthese for constructive criticism and Jay Odenbaugh and Jeff Trop for sound advice on earlier drafts.

References

  1. Beatty, J. (1995). The evolutionary contingency thesis. In G. Wolters & J. G. Lennox (Eds.), Concepts, theories, and rationality in the biological sciences (pp. 45–81). Pittsburgh: University of Pittsburgh Press.Google Scholar
  2. Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems (4th ed.). Malden, MA: Blackwell Publishing.Google Scholar
  3. Belyea, L. R., & Lancaster, J. (1999). Assembly rules within a contingent ecology. Oikos, 86, 402–416.CrossRefGoogle Scholar
  4. Bird, A. (2007). Nature’s metaphysics: Laws and properties. Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Bird, A. (2011). Are any kinds ontologically fundamental? In T. Tahko (Ed.), Contemporary aristotelian metaphysics. Cambridge: Cambridge University Press.Google Scholar
  6. Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127–148.CrossRefGoogle Scholar
  7. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species: New interdisciplinary essays. Cambridge: MIT Press.Google Scholar
  8. Brett, C. E. (2012). Coordinated stasis reconsidered: A perspective at fifteen years. In J. A. Talent (Ed.), Earth and life: Global biodiversity, extinction intervals and biogeographic perturbations through time (pp. 23–36). Dordrecht: Springer.Google Scholar
  9. Brett, C. E., Ivany, L. C., & Schopf, K. M. (1996). Coordinated stasis: An overview. Palaeogeography, 127, 1–20.CrossRefGoogle Scholar
  10. Brinson, M. M., & Verhoeven, J. (1999). Riparian forests. In M. L. Hunter (Ed.), Maintaining biodiversity in forest ecosystems. Cambridge: Cambridge University Press.Google Scholar
  11. Bryant, R. (2012). What if ecological communities are not wholes? In W. P. Kabasenche, M. O’Rourke, & M. H. Slater (Eds.), The environment: Philosophy, science, and ethics. Cambridge, MA: MIT Press.Google Scholar
  12. Budiansky, S. (1995). Nature’s keepers: The new science of nature management. New York: Free Press.Google Scholar
  13. Chakravartty, A. (2007). A metaphysics for scientific realism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Clements, F. (1916). Plant Succession: An analysis of the development of vegetation, Publication no. 242. Washington, DC: Carnegie Institution of Washington.Google Scholar
  15. Cody, M., & Diamond, J. (1975). Ecology and evolution of communities. Cambridge: Belknap Press.Google Scholar
  16. Cooper, G. J. (2003). The science of the struggle for existence: On the foundations of ecology. Cambridge: Cambridge Unviersity Press.CrossRefGoogle Scholar
  17. Craver, C. F. (2009). Mechanisms and natural kinds. Philosophical Psychology, 22(5), 575–594.CrossRefGoogle Scholar
  18. Craver, C. F. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  19. Devitt, M. (2008). Resurrecting biological essentialism. Philosophy of Science, 75(3), 344–382.CrossRefGoogle Scholar
  20. Dodds, W. K. (2009). Laws, theories, and patterns in ecology. Berkeley: University of California Press.CrossRefGoogle Scholar
  21. Dupré, J. (1993). The disorder of things. Cambridge: Harvard University Press.Google Scholar
  22. Ellis, B. (2001). Scientific essentialism. Cambridge: Cambridge University Press.Google Scholar
  23. Ginzburg, L., & Colyvan, M. (2004). Ecological orbits: How planets move and populations grow. New York: Oxford University Press.Google Scholar
  24. Gleason, H. A. (1917). The structure and development of the plant association. Bulletin of the Torrey Botanical Club, 53, 463–481.CrossRefGoogle Scholar
  25. Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.CrossRefGoogle Scholar
  26. Gleason, H. A. (1939). The individualistic concept of the plant association. American Midland Naturalist, 21, 92–110.CrossRefGoogle Scholar
  27. Golley, F. B. (1993). A history of the ecosystem concept in ecology: More than the sum of the parts. New Haven: Yale University Press.Google Scholar
  28. Gould, S. J. (1989). Wonderful life. New York: W. W. Norton & Company.Google Scholar
  29. Griffiths, P. E. (1997). What emotions really are: The problem of psychological categories. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  30. Griffiths, P. E. (1999). Squaring the circle: Natural kinds with historical essences. In R. A. Wilson (Ed.), Species: New interdisciplinary essays. Cambridge: MIT Press.Google Scholar
  31. Häggqvist, S. (2005). Kinds, projectibility and explanation. Croatian Journal of Philosophy, 5(13), 71–87.Google Scholar
  32. Haufe, C. (2013). From necessary chances to biological laws. British Journal for the Philosophy of Science, 64, 279–295.CrossRefGoogle Scholar
  33. Hempel, C. G. (1965). Fundamentals of taxonomy. Reprinted in his Aspects of Scientific Explanation (pp. 137–154). New York: Free Press.Google Scholar
  34. Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367–368.CrossRefGoogle Scholar
  35. Holdridge, L. R. (1967). Life zone ecology. San Jose: Tropical Science Center.Google Scholar
  36. Ivany, L. C., Brett, C. E., Wall, H. L. B., Wall, P. D., & Handley, J. C. (2009). Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: A test of coordinated stasis. Paleobiology, 35(4), 499–524.CrossRefGoogle Scholar
  37. Khalidi, M. A. (2013). Natural categories and human kinds. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Kitcher, P. (1984). Species. Philosophy of Science, 51, 308–333.CrossRefGoogle Scholar
  39. Kornblith, H. (1993). Inductive inference and its natural ground. Cambridge: MIT Press.Google Scholar
  40. Lange, M. (1995). Are there natural laws concerning particular biological species. Journal of Philosophy, 92(8), 430–451.CrossRefGoogle Scholar
  41. Lange, M. (2000). Natural laws in scientific practice. New York: Oxford University Press.Google Scholar
  42. Lange, M. (2004). The autonomy of functional biology: A reply to Rosenberg. Biology and Philosophy, 19, 93–109.CrossRefGoogle Scholar
  43. Lange, M. (2005). Ecological laws: What would they be and why would they matter? Oikos, 110(2), 394–403.CrossRefGoogle Scholar
  44. Lange, M. (2009). Laws and lawmakers. Oxford: Oxford University Press.Google Scholar
  45. Lawton, J. H. (1999). Are there general laws in ecology. Oikos, 84, 177–192.CrossRefGoogle Scholar
  46. Lipton, P. (1996). Review of Kornblith, inductive Inference and its natural ground. Philosophy and Phenomenological Research, 56(2), 492–494.CrossRefGoogle Scholar
  47. Lowe, E. J. (2006). The four-category ontology: A metaphysical foundation for natural science. Oxford: Oxford University Press.Google Scholar
  48. Lugo, A. E., Brown, S. L., Dodson, R., Smith, T. S., & Shugart, H. H. (1999). The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. Journal of Biogeography, 26, 1025–1038.CrossRefGoogle Scholar
  49. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press.Google Scholar
  50. Magnus, P. D. (2012). Scientific enquiry and natural kinds: From planets to mallards. London: Palgrave-Macmillan.CrossRefGoogle Scholar
  51. Mikkelson, G. M. (2003). Ecological kinds and ecological laws. Philosophy of Science, 70, 1390–1400.CrossRefGoogle Scholar
  52. Mitchell, S. (2000). Dimensions of scientific law. Philosophy of Science, 67, 242–265.CrossRefGoogle Scholar
  53. Mitchell, S. (2002). Contingent generalizations: Lessons from biology. In R. Mayntz (Ed.), Akteure–Mechanismen–Modelle. Frankfurt: Campus Verlag.Google Scholar
  54. Morin, P. J. (2011). Community ecology (2nd ed.). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  55. Morris, P. J., Ivany, L. C., & Schopf, K. M. (1995). The challenge of paleoecological stasis: Reassessing sources of evolutionary stability. Proceedings of the National Academy of Science, 92, 11269–11273.CrossRefGoogle Scholar
  56. Mumford, S. (2005). Kinds, essences, powers. Ratio, 18(4), 420–436.CrossRefGoogle Scholar
  57. Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. New York: Harcort, Brace, and World.Google Scholar
  58. Odenbaugh, J. (2007). Seeing the forest and the trees: Realism about communities and ecosystems. Philosophy of Science, 74, 628–641.CrossRefGoogle Scholar
  59. Odum, E. P. (1953). Fundamentals of ecology. Philadelphia: W.B. Saunders.Google Scholar
  60. Okasha, S. (2002). Darwinian metaphysics: Species and the question of essentialism. Synthese, 131, 191–213.CrossRefGoogle Scholar
  61. Palik, B., & Engstrom, R. T. (1999). Species composition. In M. L. Hunter (Ed.), Maintaining biodiversity in forest ecosystems. Cambridge: Cambridge University Press.Google Scholar
  62. Putnam, H. (1975). Is semantics possible?. Reprinted in his Mind, Language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.Google Scholar
  63. Rosenberg, A. (2001). How is biological explanation possible? British Journal for the Philosophy of Science, 52, 735–760.CrossRefGoogle Scholar
  64. Simberloff, D. S. (1974). Equilibrium theory of island biogeography and ecology. Annual Review of Ecology and Systematics, 5, 161–182.CrossRefGoogle Scholar
  65. Simberloff, D. S. (2004). Community ecology: Is it time to move on? The American Naturalist, 163(6), 787–799.CrossRefGoogle Scholar
  66. Slater, M. H. (2013a). Are species real?. London: Palgrave-Macmillan.CrossRefGoogle Scholar
  67. Slater, M. H. (2013b). Review of scientific enquiry and natural kinds, Notre Dame philosophical reviews. http://ndpr.nd.edu/news/40779-scientific-enquiry-and-natural-kinds-from-planets-to-mallards/
  68. Slater, M. H. (2015a). Natural kindness. The British Journal for the Philosophy of Science, 66(2), 375–411.CrossRefGoogle Scholar
  69. Slater, M. H. (2015b). Review of natural categories and human kinds. British Journal for the Philosophy of Science, 66, 1017–1023.CrossRefGoogle Scholar
  70. Sober, E. (1980). Evolution, population thinking, and essentialism. Philosophy of Science, 47, 350–383.CrossRefGoogle Scholar
  71. Sober, E. (1997). Two outbreaks of lawlessness in recent philosophy of biology. Philosophy of Science, 64, S458–467.CrossRefGoogle Scholar
  72. Tansley, A. G. (1935). The use and abuse of vegetational terms and concepts. Ecology, 16, 284–307.CrossRefGoogle Scholar
  73. Whittaker, R. H., & Niering, W. A. (1965). Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the south slope. Ecology, 46, 429–452.CrossRefGoogle Scholar
  74. Wieder, R. K., & Vitt, D. H. (Eds.). (2006). Boreal peatland ecosystems. Berlin: Springer.Google Scholar
  75. Wilson, R. A. (1999). Realism, essence, and kind: Resuscitating species essentialism? In R. A. Wilson (Ed.), Species: New interdisciplinary essays. Cambridge: MIT Press.Google Scholar
  76. Wilson, R. A. (2005). Genes and the agents of life. Cambridge: Cambridge University Press.Google Scholar
  77. Wilson, R. A., Barker, M. J., & Brigandt, I. (2007). When traditional essentialism fails: Biological natural kinds. Philosophical Topics, 35(1/2), 189–215.CrossRefGoogle Scholar
  78. Woodward, J. (2001). Law and explanation in biology: Invariance is the kind of stability that matters. Philosophy of Science, 68, 1–20.CrossRefGoogle Scholar
  79. Zimmerman, E., Davis, T., Podniesinski, G., Furedi, M., McPherson, J., & Seymour, S. (Eds.). (2012). Terrestrial and palustrine plant communities of Pennsylvania (2nd ed.). Harrisburg, PA: Pennsylvania Natural Heritage Program, Pennsylvania Department of Conservation and Natural Resources.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Bucknell UniversityLewisburgUSA

Personalised recommendations