Advertisement

Synthese

, Volume 195, Issue 4, pp 1681–1703 | Cite as

Prioritised ceteris paribus logic for counterfactual reasoning

  • Patrick Girard
  • Marcus A. Triplett
Article

Abstract

The semantics for counterfactuals due to David Lewis has been challenged by appealing to miracles. Miracles may skew a given similarity order in favour of those possible worlds which exhibit them. Lewis responded with a system of priorities that mitigates the significance of miracles when constructing similarity relations. We propose a prioritised ceteris paribus analysis of counterfactuals inspired by Lewis’ system of priorities. By analysing the couterfactuals with a ceteris paribus clause one forces out, in a natural manner, those possible worlds which do not satisfy the requirements of the clause, thus excluding miracles. If no world can satisfy the ceteris paribus clause in its entirety, then prioritisation is triggered to select worlds that maximise agreement on those things which are favoured most.

Keywords

Ceteris paribus Counterfactuals Conditional logic 

Notes

Acknowledgements

We wish to thank the participants at the Australasian Association of Logic and the Analysis, Randomness and Applications meetings held in New Zealand in 2014. A preliminary version of this paper was presented at TARK XV and we wish to thank the participants for helpful suggestions on improving the paper. We also wish to thank Sam Baron, Andrew Withy, Balder ten Cate and the anonymous referees for valuable comments.

References

  1. Bennett, J. (1974). Review of Lewis (1973). The Canadian Journal of Philosophy, 4, 381–402.CrossRefGoogle Scholar
  2. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. New York: Cambridge University Press.CrossRefGoogle Scholar
  3. Dalal, M. (1988). Investigations into a theory of knowledge base revision: preliminary report. Proceedings of the Seventh National Conference on Artificial Intelligence, 2, 475–479.Google Scholar
  4. del Cerro, L. F., & Herzig, A. (1994). Interference logic = conditional logic + frame axiom. International Journal of Intelligent Systems, 9(1), 119–130.CrossRefGoogle Scholar
  5. del Cerro, L. F., & Herzig, A. (1996). Belief change and dependence. In Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge (pp. 147–161). Morgan Kaufmann Publishers Inc.Google Scholar
  6. Doyle, J., & Wellman, M. P. (1994). Representing preferences as ceteris paribus comparatives. Ann Arbor, 1001, 48109–482110.Google Scholar
  7. Elga, A. (2001). Statistical mechanics and the asymmetry of counterfactual dependence. Philosophy of Science, 68(3), S313–S324.Google Scholar
  8. Fine, K. (1975). Review of Lewis’ counterfactuals. Mind, 84, 451–458.CrossRefGoogle Scholar
  9. Girard, P., Triplett, M.A. (2015). Ceteris paribus logic in counterfactual reasoning. In Proceedings of TARK XV.Google Scholar
  10. Hendricks, V. F. (2006). Mainstream and formal epistemology. Cambridge: Cambridge University Press.Google Scholar
  11. Holliday, W.H. (2014). Epistemic closure and epistemic logic I: Relevant alternatives and subjunctivism. Journal of Philosophical Logic, 44(1), 1–62.Google Scholar
  12. Katsuno, H., & Mendelzon, A. O. (1991). Propositional knowledge base revision and minimal change. Artificial Intelligence, 52(3), 263–294.CrossRefGoogle Scholar
  13. Lee Bowie, G. (1979). The similarity approach to counterfactuals: Some problems. Noûs, 13(4), 477–498.Google Scholar
  14. Lewis, D. (1973). Counterfactuals. Cambridge: Harvard University Press.Google Scholar
  15. Lewis, D. (1979). Counterfactual dependence and time’s arrow. Noûs, 13(4), 455–476.Google Scholar
  16. McCall, S. (1984). Counterfactuals based on real possible worlds. Noûs, 18(3), 463.CrossRefGoogle Scholar
  17. Priest, G. (2008). An introduction to non-classical logic: From if to is. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Proietti, C. (2009). Ceteris paribus modalities and the future contingents problem. Logics for Dynamics of Information and Preferences., 173(1), 304–325.Google Scholar
  19. Proietti, C., & Sandu, G. (2010). Fitch’s paradox and ceteris paribus modalities. Synthese, 173(1), 75–87.CrossRefGoogle Scholar
  20. Schaffer, J. (2004). Counterfactuals, causal independence and conceptual circularity. Analysis, 64(284), 299–308.CrossRefGoogle Scholar
  21. Schurz, G. (2002). Ceteris paribus laws: Classification and deconstruction. Erkenntnis (1975-), 57(3), 351–372.Google Scholar
  22. Seligman, J., & Girard, P. (2011). Flexibility in ceteris paribus reasoning. The Australasian Journal of Logic, 10(0), 67–99.Google Scholar
  23. Tooley, M. (2003). The Stalnaker-Lewis approach to counterfactuals. The Journal of philosophy, 100(7), 371–377.CrossRefGoogle Scholar
  24. van Benthem, J., Girard, P., & Roy, O. (2009). Everything else being equal: A modal logic for ceteris paribus preferences. Journal of Philosophical Logic, 38(1), 83–125.CrossRefGoogle Scholar
  25. von Wright, G. H. (1963). The logic of preference. Edinburgh: Edinburgh University Press.Google Scholar
  26. Wasserman, R. (2006). The future similarity objection revisited. Synthese, 150(1), 57–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of AucklandAucklandNew Zealand
  2. 2.University of AucklandAucklandNew Zealand

Personalised recommendations