, Volume 193, Issue 12, pp 3889–3929 | Cite as

Neural plasticity and concepts ontogeny

  • Alessio Plebe
  • Marco Mazzone
S.I. : Neuroscience and Its Philosophy


Neural plasticity has been invoked as a powerful argument against nativism. However, there is a line of argument, which is well exemplified by Pinker (The blank slate: the modern denial of human nature, Penguin, New York, 2002) and more recently by Laurence and Margolis (in: Laurence and Margolis (eds) The conceptual mind: new directions in the study of concepts, MIT, Cambridge, 2015) with respect to concept nativism, according to which even extreme cases of plasticity show important innate constraints, so that one should rather speak of “constrained plasticity”. According to this view, cortical areas are not really equipotential, they perform instead different kinds of computation, follow essentially different learning rules, or have a fixed internal structure acting as a filter for specific categories of inputs. We intend to analyze this argument, in the light of a review of current neuroscientific literature on plasticity. Our conclusion is that Laurence and Margolis are right in their appeal to innate constraints on connectivity—a thesis that is nowadays welcome to both nativists (Mahon and Caramazza in Trends Cogn Sci 15:97–103, 2011) and non-nativists (Pulvermüller et al. in Biol Cybern 108:573–593, 2014)—but there is little support for their claim of further innate differentiation between and within cortical areas. As we will show, there is instead strong evidence that the cortex is characterized by the indefinite repetition of substantially identical computational units, giving rise in any of its portions to Hebbian, input-dependent plasticity. Although this is entirely compatible with the existence of innate constraints on the brain’s connectivity, the cerebral cortex architecture based on a multiplicity of maps correlating with one another has important computational consequences, a point that has been underestimated by traditional connectionist approaches.


Neural plasticity Concept ontogeny Cortical plasticity 


  1. Ackman, J. B., & Crair, M. C. (2014). Role of emergent neural activity in visual map development. Current Opinion in Neurobiology, 24, 166–175.CrossRefGoogle Scholar
  2. Ahmed, B., Cordery, P. M., McLelland, D., Bair, W., & Krug, K. (2011). Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. Cerebral Cortex, 22, 60–73.CrossRefGoogle Scholar
  3. Alfano, C., & Studer, M. (2013). Neocortical arealization: Evolution, mechanisms, and open questions. Developmental Neurobiology, 73, 411–447.CrossRefGoogle Scholar
  4. Almeida, J., He, D., Chen, Q., Mahon, B. Z., Zhang, F., Gonçlves, O., et al. (2015). Decoding visual location from neural patterns in the auditory cortex of the congenitally deaf. Psychological Science, 26, 1771–1782.CrossRefGoogle Scholar
  5. Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B., & Petersen, C. C. (2010). Long-range connectivity of mouse primary somatosensory barrel cortex. European Journal of Neuroscience, 31, 2221–233.CrossRefGoogle Scholar
  6. Artola, A., & Singer, W. (1987). Long term potentiation and NMDA receptors in rat visual cortex. Nature, 330, 649–652.CrossRefGoogle Scholar
  7. Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37, 125–128.CrossRefGoogle Scholar
  8. Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.CrossRefGoogle Scholar
  9. Bear, M., & Kirkwood, A. (1993). Neocortical long term potentiation. Current Opinion in Neurobiology, 3, 197–202.CrossRefGoogle Scholar
  10. Bednar, J. A., & Miikkulainen, R. (2006). Joint maps for orientation, eye, and direction preference in a self-organizing model of v1. Neurocomputing, 69, 1272–1276.CrossRefGoogle Scholar
  11. Bedny, M., Konkle, T., Pelphrey, K., Saxe, R., & Pascual-Leone, A. (2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Current Biology, 20, 1900–1906.CrossRefGoogle Scholar
  12. Bedny, M., Pascual-Leone, A., Dravida, S., & Saxe, R. (2012). A sensitive period for language in the visual cortex: Distinct patterns of plasticity in congenitally versus late blind adults. Brain and Language, 122, 162–170.CrossRefGoogle Scholar
  13. Ben-Ari, Y. (2002). Excitatory actions of gaba during development: The nature of the nurture. Nature Reviews Neuroscience, 3, 728–739.CrossRefGoogle Scholar
  14. Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews, 87, 1215–1284.CrossRefGoogle Scholar
  15. Berlin, R. (1858). Beitrag zur structurlehre der grosshirnwindungen. Ph.D. Thesis, Medicinischen Fakultät zu Erlangen.Google Scholar
  16. Berlucchi, G., & Buchtel, H. (2009). Neuronal plasticity: Historical roots and evolution of meaning. Nature Reviews Neuroscience, 192, 307–319.Google Scholar
  17. Bermúdez-Rattoni, F. (Ed.). (2007). Neural plasticity and memory: From genes to brain imaging. Boca Raton, FL: CRC Press.Google Scholar
  18. Beul, S. F., & Hilgetag, C. C. (2015). Towards a ’canonical’ agranular cortical microcircuit. Frontiers in Neuroanatomy, 8, 165.CrossRefGoogle Scholar
  19. Bliss, T., & Collingridge, G. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.CrossRefGoogle Scholar
  20. Bliss, T., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.CrossRefGoogle Scholar
  21. Blumberg, M. S., Freeman, J. H., & Robinson, S. (Eds.). (2010). Oxford handbook of developmental behavioral neuroscience. Oxford: Oxford University Press.Google Scholar
  22. Bontempi, B., Silva, A., & Christen, Y. (Eds.). (2007). Memories: Molecules and circuits. Berlin: Springer.Google Scholar
  23. Born, R., Trott, A. R., & Hartmann, T. S. (2015). Cortical magnification plus cortical plasticity equals vision? Vision Research, 111, 161–169.CrossRefGoogle Scholar
  24. Bosman, C. A., & Aboitiz, F. (2015). Functional constraints in the evolution of brain circuits. Frontiers in Neuroscience, 9, 303.CrossRefGoogle Scholar
  25. Bourne, J. A., & Rosa, M. G. (2006). Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: Early maturation of the middle temporal area (MT). Cerebral Cortex, 16, 405–414.CrossRefGoogle Scholar
  26. Braak, H. (1974). On the structure of the human archicortex. I. The cornu ammonis. A Golgi and pigment architectonic study. Cell Tissue Research, 152, 349–383.CrossRefGoogle Scholar
  27. Braddick, O., Atkinson, J., & Innocenti, G. M. (Eds.). (2011). The developing brain: From developmental biology to behavioral disorders and their remediation. Cambridge: Cambridge University Press.Google Scholar
  28. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirmrinde. Leipzig: Barth.Google Scholar
  29. Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.CrossRefGoogle Scholar
  30. Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of local circuits in human visual cortex. Journal of Neuroscience, 13, 1916–1931.Google Scholar
  31. Burton, H., Sinclair, R. J., & Agato, A. (2012). Recognition memory for Braille or spoken words: An fMRI study in early blind. Brain, 1438, 22–34.CrossRefGoogle Scholar
  32. Burton, H., Snyder, A. Z., DIamond, J., & Raichle, M. E. (2002). Adaptive changes in early and late blind: A fMRI study of verb generation to heard nouns. Journal of Neurophysiology, 88, 3359–3371.CrossRefGoogle Scholar
  33. Bush, P. C., & Mainen, Z. F. (2015). Columnar architecture improves noise robustness in a model cortical network. PLoS ONE, 10(3), e0119072.CrossRefGoogle Scholar
  34. Butz, M., Wörgötter, F., & van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Research Reviews, 60, 287–305.CrossRefGoogle Scholar
  35. Cahalane, D. J., Charvet, C. J., & Finlay, B. L. (2012). Systematic, balancing gradients in neuron density and number across the primate isocortex. Frontiers in Nauroanatomy, 6, 28.Google Scholar
  36. Carandini, M., & Heeger, D. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62.CrossRefGoogle Scholar
  37. Carlo, C. N., & Stevens, C. F. (2013). Structural uniformity of neocortex, revisited. Proceedings of the Natural Academy of Science of United States of America, 110, 719–725.CrossRefGoogle Scholar
  38. Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: Regulation and functions. Nature Reviews Neuroscience, 13, 478–490.CrossRefGoogle Scholar
  39. Charvet, C. J., Cahalane, D. J., & Finlay, B. L. (2015). Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cerebral Cortex, 25(1), 147–160.CrossRefGoogle Scholar
  40. Cheetham, C. E., Barnes, S. J., Albieri, G., Knott, G. W., & Finnerty, G. T. (2014). Pansynaptic enlargement at adult cortical connections strengthened by experience. Cerebral Cortex, 24, 521–531.CrossRefGoogle Scholar
  41. Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality: A reply to Jerry Fodor. Philosophy of Science, 55, 167–187.CrossRefGoogle Scholar
  42. Cohen-Tannoudji, M., Babinet, C., & Wassef, M. (1994). Early determination of a mouse somatosensory cortex marker. Nature, 368, 460–463.CrossRefGoogle Scholar
  43. Collignon, O., Dormal, G., & Lepore, F. (2013). Building the brain in the dark: Functional and specific crossmodal reorganization in the occipital cortex of blind individuals. In J. K. Steeves & L. R. Harris (Eds.), Plasticity in sensory systems (pp. 114–137). Cambridge: Cambridge University Press.Google Scholar
  44. Colombo, J. (1982). The critical period concept: Research, methodology, and theoretical issues. Psychological Bulletin, 91, 260–275.CrossRefGoogle Scholar
  45. Cooke, S. F., & Bear, M. F. (2013). How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex. Philosophical Transactions of the Royal Society B, 369, 20130284.CrossRefGoogle Scholar
  46. Cowie, F. (1999). What’s within? Nativism reconsidered. Oxford: Oxford University Press.Google Scholar
  47. Crair, M. C. (1999). Neuronal activity during development: Permissive or instructive? Current Opinion in Neurobiology, 9, 88–93.CrossRefGoogle Scholar
  48. Crowley, J. C., & Katz, L. C. (2002). Ocular dominance development revisited. Current Opinion in Neurobiology, 12, 104–109.CrossRefGoogle Scholar
  49. Crozier, R. A., Wang, Y., Liu, C. H., & Bear, M. F. (2007). Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proceedings of the Natural Academy of Science of United States of America, 104, 1383–1388.CrossRefGoogle Scholar
  50. Curtiss, S. (1977). Genie—A psycholinguistic study of a modern-day wild child. New York: Academic Press.Google Scholar
  51. Danelli, L., Cossu, G., Berlingeri, M., Bottini, G., Sberna, M., & Paulesu, E. (2013). Is a lone right hemisphere enough? neurolinguistic architecture in a case with a very early left hemispherectomy. Neurocase, 19, 209–231.CrossRefGoogle Scholar
  52. Deco, G., & Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621–642.CrossRefGoogle Scholar
  53. Desai, N. S., Cudmore, R. H., Nelson, S. B., & Turrigiano, G. G. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 5, 783–789.Google Scholar
  54. Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision, 3, 586–598.CrossRefGoogle Scholar
  55. Douglas, R. J., Martin, K. A., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.CrossRefGoogle Scholar
  56. Eliasmith, C., & Anderson, C. H. (2003). Neural engineering computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT.Google Scholar
  57. Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness—A connectionist perspective on development. Cambridge, MA: MIT.Google Scholar
  58. Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13, 1124–1138.CrossRefGoogle Scholar
  59. Elston, G. N., Benavides-Piccione, R., Elston, A., Manger, P. R., & DeFelipe, J. (2011). Pyramidal cells in prefrontal cortex of primates: Marked differences in neuronal structure among species. Frontiers in Nauroanatomy, 5, 2.Google Scholar
  60. Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning. Cambridge, MA: MIT.Google Scholar
  61. Fallon, J. B., Irvine, D. R. F., & Shepherd, R. K. (2009). Neural prostheses and brain plasticity. Journal of Neural Engineering, 6, 065008.CrossRefGoogle Scholar
  62. Feldman, D. E. (2000). Timing-based LPT and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.CrossRefGoogle Scholar
  63. Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.CrossRefGoogle Scholar
  64. Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron, 75, 556–571.CrossRefGoogle Scholar
  65. Ferster, D., & Lindström, S. (1983). An intracellular analysis of geniculocortical connectivity in area 17 of the cat. Journal of Physiology, 342, 181–215.Google Scholar
  66. Forest, D. (2014). Neuroconstructivism: A developmental turn in cognitive neuroscience? In C. T. Wolfe (Ed.), Brain theory—Essays in critical neurophilosophy (pp. 68–87). London: Palgrave Macmillan.Google Scholar
  67. Fox, K. (2002). Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience, 111, 799–814.CrossRefGoogle Scholar
  68. Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014(ID541), 870.Google Scholar
  69. Fuster, J. M. (2001). The prefrontal cortex—An update: Time is of the essence. Neuron, 30, 319–333.CrossRefGoogle Scholar
  70. Fuster, J. M. (2008). The prefrontal cortex (4th ed.). New York: Academic Press.Google Scholar
  71. Gao, W. J., & Pallas, S. (1999). Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. Journal of Neuroscience, 19, 7940–7950.Google Scholar
  72. Garagnani, M., Wennekers, T., & Pulvermüller, F. (2000). Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network. Cognitive Computation, 1, 160–197.CrossRefGoogle Scholar
  73. Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 3, 1116–1133.Google Scholar
  74. Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience, 9, 2432–2442.Google Scholar
  75. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the Natural Academy of Science of United States of America, 101, 8174–8179.CrossRefGoogle Scholar
  76. Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11, 628–641.CrossRefGoogle Scholar
  77. Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559.CrossRefGoogle Scholar
  78. Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14, 357–364.CrossRefGoogle Scholar
  79. Haeusler, S., Schuch, K., & Maass, W. (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology-Paris, 21, 1229–1243.Google Scholar
  80. Haken, H. (1978). Synergetics—An introduction, nonequilibrium phase transitions and self-organization in physics, chemistry and biology (2nd ed.). Berlin: Springer.Google Scholar
  81. Harris, J., & Rubel, E. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216–217, 127–137.CrossRefGoogle Scholar
  82. Harris, K. D., & Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18, 170–181.CrossRefGoogle Scholar
  83. Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.CrossRefGoogle Scholar
  84. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  85. Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 887–888.CrossRefGoogle Scholar
  86. Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., & Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proceedings of the Natural Academy of Science of United States of America, 34, 12593–12598.CrossRefGoogle Scholar
  87. Herculano-Houzel, S., & Lent, R. (2005). Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. Journal of Neuroscience, 25, 2518–2521.CrossRefGoogle Scholar
  88. Herculano-Houzel, S., Catania, K., Manger, P. R., & Kaas, J. H. (2015). Mammalian brains are made of these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain, Behavior and Evolution, 86, 145–163.CrossRefGoogle Scholar
  89. Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34, 575–583.CrossRefGoogle Scholar
  90. Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10, 647–658.CrossRefGoogle Scholar
  91. Homae, F., Watanabe, H., Otobe, T., Nakano, T., Go, T., Konishi, Y., et al. (2010). Development of global cortical networks in early infancy. Journal of Neuroscience, 30, 4877–4882.CrossRefGoogle Scholar
  92. Hou, C., Pettet, M. W., Sampath, V., Candy, T. R., & Norcia, A. M. (2003). Development of the spatial organization and dynamics of lateral interactions in the human visual system. Journal of Neuroscience, 23, 8630–8640.Google Scholar
  93. Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932–938.CrossRefGoogle Scholar
  94. Huang, S., Rozas, C., Trevino, M., Contreras, J., Yang, S., Song, L., et al. (2014). Associative Hebbian synaptic plasticity in primate visual cortex. Journal of Neuroscience, 34, 7575–7579.CrossRefGoogle Scholar
  95. Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.CrossRefGoogle Scholar
  96. Hubel, D., & Wiesel, T. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.Google Scholar
  97. Huttenlocher, P. R. (2002). Neural plasticity—The effects of environment on the development of the cerebral cortex. Cambridge, MA: Harvard University Press.Google Scholar
  98. Innocenti, G. M., & Price, D. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955–965.CrossRefGoogle Scholar
  99. Ito, M. (1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.CrossRefGoogle Scholar
  100. James, W. (1890). The principles of psychology. New York: Holt, Rinehart and Winston.CrossRefGoogle Scholar
  101. Jones, E. G. (1984). Identication and classication of intrinsic circuit elements in the neocortex. In G. Edelman, W. Gall, & W. Cowan (Eds.), Dynamic Aspects of neocortical function (pp. 7–40). New York: Wiley.Google Scholar
  102. Jones, E. G. (1985). The Thalamus. New York: Plenum Press.Google Scholar
  103. Kaas, J. H. (1997). Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience, 14, 137–167.CrossRefGoogle Scholar
  104. Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373.CrossRefGoogle Scholar
  105. Kaplan, D. M., & Craver, C. F. (2011). Towards a mechanistic philosophy of neuroscience. In S. French & J. Saatsi (Eds.), Continuum companion to the philosophy of science (pp. 268–292). London: Continuum Press.Google Scholar
  106. Karbowski, J. (2014). Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex. Frontiers in Neural Circuits, 8, 9.CrossRefGoogle Scholar
  107. Karlen, S. J., Hunt, D. L., & Krubitzer, L. (2010). Cross-modal plasticity in the mammalian neocortex. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 357–374). Oxford: Oxford University Press.Google Scholar
  108. Karlen, S. J., Kahn, D., & Krubitzer, L. (2006). Early blindness results in abnormal corticocortical and thalamo cortical connections. Neuroscience, 142, 843–858.CrossRefGoogle Scholar
  109. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT.Google Scholar
  110. Katz, B. (1971). Quantal mechanism of neural transmitter release. Science, 173, 123–126.CrossRefGoogle Scholar
  111. Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.CrossRefGoogle Scholar
  112. Khazipov, R., & Buzsáki, G. (2010). Early patterns of electrical activity in the developing cortex. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 161–177). Oxford: Oxford University Press.Google Scholar
  113. Khazipov, R., & Colonnese, M. (2013). Neonatal cortical rhythms. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 131–153). New York: Academic Press.CrossRefGoogle Scholar
  114. Kisvárday, Z. F., Tóth, E., Rausch, M., & Eysel, U. T. (1997). Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cerebral Cortex, 7, 605–618.CrossRefGoogle Scholar
  115. Ko, H., Mrsic-Flogel, T. D., & Hofer, S. B. (2014). Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. Journal of Neuroscience, 34, 9812–9816.CrossRefGoogle Scholar
  116. Kolb, B. (1995). Brain plasticity and behavior. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  117. Kolb, B., & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 251–260.CrossRefGoogle Scholar
  118. Kovács, I., Kozma, P., Fehér, A., & Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proceedings of the Natural Academy of Science of United States of America, 96, 12204–12209.CrossRefGoogle Scholar
  119. Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neuroscience, 8, 408–417.CrossRefGoogle Scholar
  120. Krubitzer, L., & Kaas, J. H. (2005). The evolution of the neocortex in mammals: How is phenotypic diversity generated? Current Opinion in Neurobiology, 15, 444–453.CrossRefGoogle Scholar
  121. Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713–727.CrossRefGoogle Scholar
  122. Laurence, S., & Margolis, E. (2015). Concept nativism and neuralplasticity. In S. Laurence & E. Margolis (Eds.), Conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT.Google Scholar
  123. Levy, W., & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791–797.CrossRefGoogle Scholar
  124. Li, W., Luxenberg, E., Parrish, T., & Gottfried, J. A. (2006). Learning to smell the roses: Experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron, 52, 1097–1108.CrossRefGoogle Scholar
  125. Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7, 179–193.CrossRefGoogle Scholar
  126. Lorente de Nó, R. (1938). Architectonics and structure of the cerebral cortex. In J. Fulton (ed.), Physiology of the nervous system (pp. 291–330). Oxford, UK: Oxford University Press.Google Scholar
  127. Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136, 659–676.CrossRefGoogle Scholar
  128. Mahon, B. Z. (2015). Missed connections: A connectivity constrained account of the representation and organization of object concepts. In S. Laurence & E. Margolis (Eds.), The conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT.Google Scholar
  129. Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the brain? The distributed domain-specific hypothesis. Trends in Cognitive Sciences, 15, 97–103.Google Scholar
  130. Majewska, A. K., & Sur, M. (2006). Plasticity and specicity of cortical processing networks. Trends in Neuroscience, 26, 323–329.Google Scholar
  131. Marcus, G. F., Marblestone, A., & Dean, T. (2014). The atoms of neural computation. Science, 346, 551–552.CrossRefGoogle Scholar
  132. Marik, S. A., Yamahachi, H., McManus, J. N. J., Szabo, G., & Gilbert, C. D. (2010). Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biology, 8, 1–16.CrossRefGoogle Scholar
  133. Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 3, 4.CrossRefGoogle Scholar
  134. Markram, H., Gerstner, W., & Sjöström, P. J. (2012). Spike-timing-dependent plasticity: A comprehensive overview. Frontiers in Synaptic Neuroscience, 4, 2.CrossRefGoogle Scholar
  135. Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.CrossRefGoogle Scholar
  136. Marr, D. (1970). A theory for cerebral neocortex. Proceedings of the Royal Society of London B, 176, 161–234.CrossRefGoogle Scholar
  137. Mason, C. (2009). The development of developmental neuroscience. Journal of Neuroscience, 29(2735–12), 747.Google Scholar
  138. Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. Spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.Google Scholar
  139. May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15, 475–482.CrossRefGoogle Scholar
  140. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14, 348–356.CrossRefGoogle Scholar
  141. Meister, M., Wong, R., Daylor, D., & Shatz, C. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–943.CrossRefGoogle Scholar
  142. Menary, R. (2014). Neural plasticity, neuronal recycling and niche construction. Minds and Language, 29, 286–303.CrossRefGoogle Scholar
  143. Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. New York: Springer.Google Scholar
  144. Miller, K. D. (2016). Canonical computations of cerebral cortex. Current Opinion in Neurobiology, 37, 75–84.CrossRefGoogle Scholar
  145. Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT.Google Scholar
  146. Mitani, A., Shimokouchi, M., Itoh, K., Nomura, S., Kudo, M., Mizuno, N. (1985). Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. Journal of Comparative Neurology, 235, 430–447Google Scholar
  147. Møller, A. R. (Ed.). (2006). Neural plasticity and disorders of the nervous system. Cambridge: Cambridge University Press.Google Scholar
  148. Mountcastle, V. (1957). Modality and topographic properties of single neurons in cats somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.Google Scholar
  149. Nakamura, H. (2013). Area patterning of the mammalian cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 45–60). New York: Academic Press.CrossRefGoogle Scholar
  150. Newport, E., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In E. Dupoux (Ed.), Language, brain, and cognitive development: Essays in honor of Jacques Mehler (pp. 481–502). Cambridge, MA: MIT.Google Scholar
  151. Nieuwenhuys, R. (1994). The neocortex. Anatomy and Embryology, 190, 307–337.CrossRefGoogle Scholar
  152. Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Berlin: Springer.CrossRefGoogle Scholar
  153. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (Eds.). (2003). Niche construction: The neglected process in evolution. Princeton, NJ: Princeton University Press.Google Scholar
  154. Ohl, F. W., Scheich, H., & Freeman, W. J. (2001). Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412, 733–736.CrossRefGoogle Scholar
  155. O’Leary, D. D., Chou, S. J., & Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron, 56, 252–269.CrossRefGoogle Scholar
  156. O’Leary, D. D., Stocker, A., & Zembrzycki, A. (2013). Area patterning of the mammalian cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 61–85). New York: Academic Press.CrossRefGoogle Scholar
  157. Oppenheim, R. W., Milligan, C., & Sun, W. (2010). Programmed cell death during nervous system development: Mechanisms, regulation, functions, and implications for neurobehavioral ontogeny. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 76–107). Oxford: Oxford University Press.Google Scholar
  158. Paillard, J. (1976). Réflexions sur l’usage du concept de plasticité en neurobiology. Journal de Psychologie Normale et Pathologique, 1, 33–47.Google Scholar
  159. Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J. H., et al. (2013). GABAergic circuits control spike-timing-dependent plasticity. Journal of Neuroscience, 33, 9353–9363.CrossRefGoogle Scholar
  160. Palmer, S. (1999). Vision science—Photons to phenomenology. Cambridge, MA: MIT.Google Scholar
  161. Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.CrossRefGoogle Scholar
  162. Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic principles. Cognition, 1418, 306–338.CrossRefGoogle Scholar
  163. Piccinini, G. (2007). Computational modeling vs. computational explanation: Is everything a Turing Machine, and does it matter to the philosophy of mind? Australasian Journal of Philosoph, 85, 93–115.CrossRefGoogle Scholar
  164. Pinker, S. (2002). The Blank Slate: The modern denial of human nature. New York: Penguin.Google Scholar
  165. Plebe, A. (2007). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.CrossRefGoogle Scholar
  166. Plebe, A. (2012). A model of the response of visual area V2 to combinations of orientations. Network: Computation in Neural Systems, 23, 105–122.Google Scholar
  167. Plebe, A., Mazzone, M., & De La Cruz, V. M. (2010). First words learning: A cortical model. Cognitive Computation, 2, 217–229.CrossRefGoogle Scholar
  168. Prinz, J. (2002). Furnishing the mind—Concepts and their perceptual basis. Cambridge, MA: MIT.Google Scholar
  169. Prinz, J. (2012). Beyond human nature—How culture and experience shape the human mind. New York: Norton & Co.Google Scholar
  170. Proulx, M. J. (2010). Synthetic synaesthesia and sensory substitution. Consciousness and Cognition, 19, 501–503.CrossRefGoogle Scholar
  171. Proulx, M. J., Brown, D. J., Pasqualotto, A., & Meijer, P. (2014). Multisensory perceptual learning and sensory substitution. Neuroscience and Biobehavioral Reviews, 41, 16–25.CrossRefGoogle Scholar
  172. Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: Toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics, 108, 573–593.CrossRefGoogle Scholar
  173. Quartz, S. R. (2003). Toward a developmental evolutionary psychology: Genes, development, and the evolution of the human cognitive architecture. In S. Scher & F. Rauscher (Eds.), Evolutionary psychology—Alternative approaches (pp. 185–210). Dordrecht: Kluwer.CrossRefGoogle Scholar
  174. Rakic, P. (2008). Confusing cortical columns. Proceedings of the Natural Academy of Science of Unites States of America, 34, 12099–12100.CrossRefGoogle Scholar
  175. Rakica, P., Ayoub, A. E., Breunig, J. J., & Dominguez, M. H. (2009). Decision by division: Making cortical maps. Trends in Neuroscience, 32, 291–301.CrossRefGoogle Scholar
  176. Ramón y Cajal, S. (1894). The croonian lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 444–468.CrossRefGoogle Scholar
  177. Ramón y Cajal, S. (1906). In J. DeFelipe & E. G. Jones (Eds.), Cajal on the cerebral cortex: An annotated translation of the complete writings (p. 1988). Oxford: Oxford University Press.Google Scholar
  178. Reali, F., & Christiansen, M. H. (2005). Uncovering the richness of the stimulus: Structure dependence and indirect statistical evidence. Cognitive Science, 29, 1007–1028.CrossRefGoogle Scholar
  179. Rockel, A., Hiorns, R., & Powell, T. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.CrossRefGoogle Scholar
  180. Roe, A. W., Garraghty, P., Esguerra, M., & Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250, 818–820.CrossRefGoogle Scholar
  181. Roe, A. W., Garraghty, P., & Sur, M. (1987). Retinotectal W cell plasticity: Experimentally induced retinal projections to auditory thalamus in ferrets. Soc Neurosci Abst, 13, 1023.Google Scholar
  182. Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2009). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14, 64–71.CrossRefGoogle Scholar
  183. Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 906–914.Google Scholar
  184. Roubertouxs, P. L., Jamon, M., & Carlier, M. (2010). Brain development: Genes, epigenetic events, and maternal environments. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 51–75). Oxford: Oxford University Press.Google Scholar
  185. Rubenstein, J. L. R., & Rakic, P. (Eds.). (2013a). Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain. New York: Academic Press.Google Scholar
  186. Rubenstein, J. L. R., & Rakic, P. (Eds.). (2013b). Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS. New York: Academic Press.Google Scholar
  187. Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Minds and Machines, 19, 211–240.Google Scholar
  188. Sakurai, Y. (2014). Brain–machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain. Frontiers in Systems Neuroscience, 8, 104.Google Scholar
  189. Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.CrossRefGoogle Scholar
  190. Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron, 17, 655–667.CrossRefGoogle Scholar
  191. Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in auditory cortex. Nature, 404, 841–847.CrossRefGoogle Scholar
  192. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 3589–3594.CrossRefGoogle Scholar
  193. Shepherd, G. M. (1979). The Synaptic Organization of the Brain (2nd ed.). Oxford, UK: Oxford University Press.Google Scholar
  194. Shepherd, G. M. (1988). A basic circuit for cortical organization. In M. S. Gazzaniga (Ed.), Perspectives on memory research (pp. 93–134). Cambridge, MA: MIT.Google Scholar
  195. Shulz, D., & Feldman, D. (2013). Spike timing-dependent plasticity. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 155–181). New York: Academic Press.CrossRefGoogle Scholar
  196. Sirois, S., Spratling, M., Thomas, M. S. C., Westermann, G., Mareschal, D., & Johnson, M. H. (2008). Preécis of neuroconstructivism: How the brain constructs cognition. Behavioral and Brain Science, 31, 321–356.CrossRefGoogle Scholar
  197. Squire, L., & Kandel, E. (1999). Memory: From mind to molecules. New York: Scientific American Library.Google Scholar
  198. Srinivasan, S., Carlo, C. N., & Stevens, C. F. (2015). Predicting visual acuity from the structure of visual cortex. Proceedings of the Natural Academy of Science USA, 112, 7815–7820.CrossRefGoogle Scholar
  199. Steeves, J. K., & Harris, L. R. (Eds.). (2013). Plasticity in sensory systems. Cambridge: Cambridge University Press.Google Scholar
  200. Stettler, D. D., Yamahachi, H., Li, W., Denk, W., & Gilbert, C. D. (2006). Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron, 49, 877–887.CrossRefGoogle Scholar
  201. Stevens, J. L. R., Law, J. S., Antolik, J., & Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. JNS, 33, 15747–15766.Google Scholar
  202. Stiles, J. (2011). Brain development and the nature versus nurture debate. In O. Braddick, J. Atkinson, & G. M. Innocenti (Eds.), The developing brain: From developmental biology to behavioral disorders and their remediation (pp. 3–22). Cambridge: Cambridge University Press.Google Scholar
  203. Stiles, J., Reilly, J. S., Levine, S. C., Trauner, D. A., & Nass, R. (2012). Neural plasticity and cognitive development: Insights from children with perinatal brain injury. Oxford: Oxford University Press.CrossRefGoogle Scholar
  204. Su, C. Y., Menuz, K., & Carlson, J. R. (2009). Olfactory perception: Receptors, cells, and circuits. Cell, 139, 45–59.CrossRefGoogle Scholar
  205. Sur, M. (1989). Visual plasticity in the auditory pathway: Visual inputs induced into auditory thalamus and cortex illustrate principles of adaptive organization in sensory systems. In Dynamic interactions in neural networks: Models and data (pp. 35–52). Berlin: Springer.Google Scholar
  206. Sur, M., & Leamey, C. A. (2001). Development and plasticity of cortical areas and networks. Nature Reviews Neuroscience, 2, 251–262.CrossRefGoogle Scholar
  207. Sur, M., & Rubenstein, J. L. R. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–810.CrossRefGoogle Scholar
  208. Swingley, D. (2010). Fast mapping and slow mapping in children’s word learning. Language Learning and Development, 6, 179–183.CrossRefGoogle Scholar
  209. Trachtenberg, J. T., & Stryker, M. P. (2001). Rapid anatomical plasticity of horizontal connections in the developing visual cortex. Journal of Neuroscience, 21, 3476–3482.Google Scholar
  210. Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., & Bergles, D. E. (2007). The origin of spontaneous activity in the developing auditory system. Nature, 450, 50–56.CrossRefGoogle Scholar
  211. Turrigiano, G. G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103.CrossRefGoogle Scholar
  212. Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.Google Scholar
  213. Ursino, M., & La Cara, G. E. (2004). Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Research, 44, 1641–1658.CrossRefGoogle Scholar
  214. van Ooyen, A. (2001). Competition in the development of nerve connections: A review of models. Network: Computation in Neural Systems, 12, R1–R47.CrossRefGoogle Scholar
  215. Verhage, M., Maia, A. S., Plomp, J. J., Brussaard, A. B., Heeroma, J. H., Vermeer, H., et al. (2000). Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 287, 864–869.CrossRefGoogle Scholar
  216. Vogt, C., & Vogt, O. (1919). Allgemeine Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie, 25, 279–461.Google Scholar
  217. von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetic, 14, 85–100.CrossRefGoogle Scholar
  218. von der Malsburg, C. (1995). Network self-organization in the ontogenesis of the mammalian visual system. In S. F. Zornetzer, J. Davis, C. Lau, & T. McKenna (Eds.), An introduction to neural and electronic networks (2nd ed., pp. 447–462). New York: Academic Press.Google Scholar
  219. von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer.Google Scholar
  220. von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.CrossRefGoogle Scholar
  221. Wang, X., Merzenich, M. M., Sameshima, K., & Jenkins, W. M. (1995). Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature, 378, 71–75.CrossRefGoogle Scholar
  222. Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron’s cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 5.CrossRefGoogle Scholar
  223. Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., et al. (2010). Reorganization of global form and motion processing during human visual development. Current Biology, 20, 411–415.CrossRefGoogle Scholar
  224. Weiskopf, D. A. (2008). The origins of concepts. Philosophical Studies, 140, 359–384.CrossRefGoogle Scholar
  225. Wiesel, T., & Hubel, D. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.Google Scholar
  226. Will, B., Dalrymple-Alford, J., Wolff, M., & Cassel, J. C. (2008). Reflections on the use of the concept of plasticity in neurobiology: Translation and adaptation by Bruno Will, John Dalrymple-Alford, Mathieu Wolff and Jean-Christophe Cassel from J. Paillard, J Psychol 1976. Behavioural Brain Research, 192, 7–11.CrossRefGoogle Scholar
  227. Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, B194, 431–445.CrossRefGoogle Scholar
  228. Wilson, S. P., Law, J. S., Mitchinson, B., Prescott, T. J., & Bednar, J. A. (2010). Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE, 5, e8778.CrossRefGoogle Scholar
  229. Wonnacott, E. (2013). Learning: Statistical mechanisms in language acquisition. In P. Binder & K. Smith (Eds.), The language phenomenon (pp. 65–92). Berlin: Springer.CrossRefGoogle Scholar
  230. Xu, H., Chen, M. F. Y. S. M. H., Zenisek, S. L. K. D., Zhou, Z. J., Tian, D. A. B. N., Picciotto, M. R., et al. (2011). An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron, 71, 1141–1152.CrossRefGoogle Scholar
  231. Zeki, S. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, 236, 549–573.CrossRefGoogle Scholar
  232. Zeki, S. (2015). Area V5—A microcosm of the visual brain. Frontiers in Integrative Neuroscience, 9, 21.CrossRefGoogle Scholar
  233. Zhang, J., Ackman, J., Xu, H. P., & Crair, M. C. (2011). Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience, 71, 1141–1152.Google Scholar
  234. Zhuo, M., & Hawkins, R. D. (1995). Long-term depression: A learning-related type of synaptic plasticity in the mammalian central nervous system. Reviews in the Neurosciences, 6, 259–277.CrossRefGoogle Scholar
  235. Zou, D., Feinstein, P., Rivers, A., Mathews, G., Kim, A., & Greer, C. (2004). Postnatal refinement of peripheral olfactory projections. Science, 304, 1976–1979.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Cognitive ScienceMessinaItaly
  2. 2.University of CataniaCataniaItaly

Personalised recommendations