The philosophy of plant neurobiology: a manifesto
- 1.3k Downloads
- 8 Citations
Abstract
‘Plant neurobiology’ has emerged in recent years as a multidisciplinary endeavor carried out mainly by steady collaboration within the plant sciences. The field proposes a particular approach to the study of plant intelligence by putting forward an integrated view of plant signaling and adaptive behavior. Its objective is to account for the way plants perceive and act in a purposeful manner. But it is not only the plant sciences that constitute plant neurobiology. Resources from philosophy and cognitive science are central to such an interdisciplinary project, if plant neurobiology is to maintain its target well-focused. This manifesto outlines a road map for the establishment and development of a new subject—the Philosophy of Plant Neurobiology—, a new field of research emerging at the intersection of the philosophy of cognitive science and plant neurobiology. The discipline is herewith presented, introducing challenges and novel lines of engagement with the empirical investigation, and providing an explanatory framework and guiding principles that will hopefully ease the integration of research on the quest for plant intelligence.
Keywords
Plant neurobiology (philosophy of) Plant intelligence Cognitive scienceNotes
Acknowledgments
The research reported here was supported by Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, through project 11944/PHCS/09.
References
- Alpi, A., Amrhein, N., Bertl, A., Blatt, M. R., Blumwald, E., Cervone, F., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Science, 12(4), 135–136.CrossRefGoogle Scholar
- Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175(4), 1257–1266.CrossRefGoogle Scholar
- Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C., & Preston, C. A. (2006). Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science, 311(5762), 812–815.CrossRefGoogle Scholar
- Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signal Behavior, 5(2), 87–89.CrossRefGoogle Scholar
- Baluška, F., Hlavacka, Andrej, Mancuso, Stefano, & Barlow, Peter W. (2006). Neurobiological view of plants and their body plan. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 19–35). New York, NY: Springer.CrossRefGoogle Scholar
- Baluška, F., & Mancuso, S. (2007). Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Signal Behavior, 2(4), 205–207.CrossRefGoogle Scholar
- Baluška, F., & Mancuso, S. (2009a). Plant neurobiology: From sensory biology, via plant communication, to social plant behavior. Cognitive Processing, 10(Suppl. 1), 3–7.CrossRefGoogle Scholar
- Baluška, F., & Mancuso, S. (2009b). Deep evolutionary origins of neurobiology: Turning the essence of ‘neural’ upside-down. Communicative & Integrative Biology, 2(1), 60–65.CrossRefGoogle Scholar
- Baluška, F., & Mancuso, S. (2009c). Plants and animals: Convergent evolution in action? In F. Baluška (Ed.), Plant-environment interactions: From sensory plant biology to active plant behavior (pp. 285–301). Berlin: Springer.CrossRefGoogle Scholar
- Baluška, F., & Mancuso, S. (2013). Root apex transition zone as oscillatory zone. Frontiers in Plant Science, 4, 354.Google Scholar
- Bastien, R., Bohr, T., Moulia, B., & Douady, S. (2013). Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 755–760.CrossRefGoogle Scholar
- Barlow, P. W. (2008). Reflections on ‘plant neurobiology’. BioSystems, 92(2), 132–147.CrossRefGoogle Scholar
- Bechtel, W. (1993). Integrating sciences by creating new disciplines: The case of cell biology. Biology & Philosophy, 8(3), 277–299.CrossRefGoogle Scholar
- Bechtel, W. (2009). Constructing a philosophy of science of cognitive science. Topics in Cognitive Science, 1(3), 548–569.CrossRefGoogle Scholar
- Bechtel, W. (2010). How can philosophy be a true cognitive science disciplines? Topics in Cognitive Science, 2(3), 357–366.CrossRefGoogle Scholar
- Bechtel, W. (2014). Cognitive biology: Surprising model organisms for cognitive science. In Proceedings of the 36th annual conference of the cognitive science society. Austin, TX: Cognitive Science Society.Google Scholar
- Bechtel, W., & Herschbach, M. (2010). Philosophy of the cognitive sciences. In Fritz Allhoff (Ed.), Philosophy of the sciences (pp. 237–261). Oxford: Blackwell.CrossRefGoogle Scholar
- Bickle (2003) Philosophy and neuroscience. A ruthlessly reductive account. Springer.Google Scholar
- Bose, J. C. (1926). The Nervous mechanism of plants. London: Longmans, Green and Co.Google Scholar
- Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115.CrossRefGoogle Scholar
- Bouché, N., Lacombe, B., & Fromm, H. (2003). GABA signalling: A conserved and ubiquitous mechanism. Trends Cell Biology, 13, 607–610.CrossRefGoogle Scholar
- Brenner, E. D., Stahlberg, R., Mancuso, S., Baluška, F., & van Volkenburgh, E. (2007). Plant neurobiology: The gain is more than the name. Trends in Plant Science, 12(7), 285–286.CrossRefGoogle Scholar
- Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J. M., Baluška, F., & van Volkenburgh, E. (2007). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11(8), 413–419.CrossRefGoogle Scholar
- Brook, A. (2009). Philosophy in and philosophy of cognitive science. Topics in Cognitive Science, 1(2), 216–230.CrossRefGoogle Scholar
- Calvo, P. (2007). The quest for cognition in plant neurobiology. Plant Signaling and Behavior, 2(4), 208–211.CrossRefGoogle Scholar
- Calvo, P. (2012). Plant neurobiology: Lessons for the unity of science. In O. Pombo, J. M. Torres, J. Symons, & S. Rahman (Eds.), Special sciences and the unity of science (pp. 121–136). New York, NY: Springer.Google Scholar
- Calvo, P., & Baluška, F. (2015). Conditions for minimal intelligence across eukaryota: A cognitive science perspective. Frontiers in Psychology, 6, 1329. doi: 10.3389/fpsyg.2015.01329.Google Scholar
- Calvo, P., Baluška, F., & Sims, A. (submitted). ‘Feature detection’ versus ‘predictive coding’ models of plant behavior. Frontiers in Psychology.Google Scholar
- Calvo, P., & Gomila, A. (2008). Handbook of cognitive science: An embodied approach. Amsterdam: Elsevier Science.Google Scholar
- Calvo, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root brains and minimal cognition. Adaptive Behavior, 19(3), 155–171.CrossRefGoogle Scholar
- Calvo, P., Martín, E., & Symons, J. (2014). The emergence of systematicity in minimally cognitive agents. In P. Calvo & J. Symons (Eds.), The architecture of cognition: Rethinking Fodor and Pylyshyn’s systematicity challenge (pp. 397–434). Cambridge, MA: MIT Press.Google Scholar
- Calvo, P., Raja, V. & Lee, D. N. (technical report) Guidance of circumnutation of climbing bean stems: An ecological exploration, MINTLab Technical Report #15-11(1). November 2015.Google Scholar
- Carello, C., Vaz, D., Blau, J. J. C., & Petrusz, S. C. (2012). Unnerving intelligence. Ecological Psychology, 24(3), 241–264.CrossRefGoogle Scholar
- Carruthers, P. (2004). On being simple minded. American Philosophical Quarterly, 41(3), 205–220.Google Scholar
- Chamovitz, D. (2012). What a plant knows: A field guide to the senses. New York, NY: Scientific American/Farrar, Staus & Giroux.Google Scholar
- Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
- Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: MIT Press.Google Scholar
- Churchland, P. S. (2002). Brain-wise: Studies in neurophilosophy. Cambridge, MA: MIT Press.Google Scholar
- Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. New York: Oxford University Press.Google Scholar
- Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory pluralism in cognitive science. Cognitive Science, 33(5), 739–742.CrossRefGoogle Scholar
- Dennett, D. (2009). The part of cognitive science that is philosophy. Topics in Cognitive Science, 1, 231–236.CrossRefGoogle Scholar
- Dicke, M., Agrawal, A. A., & Bruin, J. (2003). Plants talk, but are they deaf? Trends in Plant Science, 8(9), 403–405.CrossRefGoogle Scholar
- Dumais, J. (2013). Beyond the sine law of plant gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 391–392.CrossRefGoogle Scholar
- Dyer, F. C., & Dickinson, J. A. (1994). Development of sun compensation by honeybees: How partially experienced bees estimate the sun’s course. Proceedings of the National Academy of Sciences, 91, 4471–4474.CrossRefGoogle Scholar
- Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine neural population responses in the ventral visual stream. The Journal of Neuroscience, 30(49), 16601–16608.CrossRefGoogle Scholar
- Esch, H. E., Zhang, S., Srinivasan, M. V., & Tautz, J. (2001). Honeybee dances communicate distances measured by optic flow. Nature, 411, 581–583.CrossRefGoogle Scholar
- Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London, 360(1456), 815–836.CrossRefGoogle Scholar
- Fumerton, R. (1999). A priori philosophy after an a posteriori turn. Midwest Studies in Philosophy, 23(1), 21–33.CrossRefGoogle Scholar
- Gagliano, M., Mancuso, S., & Robert, D. (2012). Towards understanding plant bioacoustics. Trends in Plant Science, 17(6), 323–325.CrossRefGoogle Scholar
- Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63–72.CrossRefGoogle Scholar
- Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
- Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
- Gilroy, S. (2008) Plant tropisms. Current Biology, 18, R275–R277.Google Scholar
- Greenspan, R. J., & Baars, B. J. (2005). Consciousness eclipsed: Jacques Loeb, Ivan P. Pavlov, and the rise of reductionistic biology after 1900. Conscious Cogn, 14, 219–230.CrossRefGoogle Scholar
- Gruntman, M., & Novoplansky, A. (2004). Physiologically-mediated self/nonself discrimination in roots. Proceedings of the National Academy of Sciences of the United States of America, 101, 3863–3867.CrossRefGoogle Scholar
- Hodge, A. (2009). Root decisions. Plant, Cell & Environment, 32(6), 628–640.CrossRefGoogle Scholar
- Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229–289.Google Scholar
- Keijzer, F., van Duijn, M., & Lyon, P. (2013). What nervous systems do: Early evolution, input-output versus skin brain theory. Adaptive Behavior, 21(2), 67–85.CrossRefGoogle Scholar
- Kok, P., Brouwer, G. J., van Gerven, M. A., & de Lange, F. P. (2013). Prior expectations bias sensory representations in visual cortex. The Journal of Neuroscience, 33(41), 16275–16284.CrossRefGoogle Scholar
- Lee, D. N. (1998). Guiding movement by coupling taus. Ecological Psychology, 10(3–4), 221–250.CrossRefGoogle Scholar
- Lee, D. N. (2009). General Tau Theory: Evolution to date. Perception, 38(6), 837–850.CrossRefGoogle Scholar
- Lee, D. N., & Reddish, P. L. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293–294.CrossRefGoogle Scholar
- Lyon, P. (2007). From quorum to cooperation: Lessons from bacterial sociality for evolutionary theory. Studies in History and Philosophy of Biological and Biomedical Sciences, 38, 820–833.CrossRefGoogle Scholar
- Mackie, G. O. (1970). Neuroid conduction and the evolution of conducting tissues. The Quarterly Review of Biology, 45(4), 319–332.CrossRefGoogle Scholar
- Mancuso, S., & Viola, A. (2015). Brilliant green. The surprising history and science of plant intelligence, (Joan Benham, Trans.). Island Press.Google Scholar
- Marder, M. (2011). Vegetal anti-metaphysics: Learning from plants. Continental Philosophy Review, 44(4), 469–489.CrossRefGoogle Scholar
- Marder, M. (2012a). The life of plants and the limits of empathy. Dialogue, 51(2), 259–273.CrossRefGoogle Scholar
- Marder, M. (2012b). Plant intentionality and the phenomenological framework of plant intelligence. Plant Signaling & Behavior, 7(11), 1–8.CrossRefGoogle Scholar
- Marder, M. (2013). Plant-thinking: A philosophy of vegetal life. New York: Columbia University Press.Google Scholar
- Mazzolai, B., Laschi, C., Dario, P., Mugnai, S., & Mancuso, S. (2010). The plant as a biomechatronic system. Plant Signaling & Behavior, 5(2), 1–4.CrossRefGoogle Scholar
- Michaels, C. F., & Carello, C. (1981). Direct perception. New Jersey, NJ: Prentice-Hall Inc.Google Scholar
- Novoplansky, A. (2009). Picking battles wisely: Plant behaviour under competition. Plant, Cell & Environment, 32(6), 726–741.CrossRefGoogle Scholar
- Novoplansky, A. (2016). Future Perception in Plants. In Mihai Nadin (Ed.), Anticipation across disciplines (pp. 57–70). Springer.Google Scholar
- Ovsepian, S. V., & Vesselkin, N. P. (2014). Wiring prior to firing: The evolutionary rise of electrical and chemical modes of synaptic transmission. Reviews in the Neurosciences, 25(6), 821–832.CrossRefGoogle Scholar
- Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.Google Scholar
- Pickard, B. G. (1973). Action potentials in higher plants. The Botanical Review, 39(2), 172–201.CrossRefGoogle Scholar
- Port, R., & Van Gelder, T. (1995). Mind as motion. Cambridge, MA: MIT Press.Google Scholar
- Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extraclassical receptive-field effects. Nature Neuroscience, 2, 79–87.CrossRefGoogle Scholar
- Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. (2008). Ecological psychology: Six principles for an embodied-embedded approach to behavior. In P. Calvo & A. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 161–190). Amsterdam: Elsevier Science.Google Scholar
- Robbins, P., & Aydede, M. (Eds.). (2009). The Cambridge handbook of situated cognition. Cambridge, MA: Cambridge University Press.Google Scholar
- Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar
- Rock, I. (Ed.). (1997). Indirect perception. Cambridge, MA: MIT Press.Google Scholar
- Ryan, T. J., & Grant, S. G. (2009). The origin and evolution of synapses. Nature Reviews Neuroscience, 10(10), 701–712.CrossRefGoogle Scholar
- Schenk, H. J., Callaway, R. M., & Mahall, B. E. (1999). Spatial root segregation: Are plants territorial? Advances in Ecological Research, 28, 145–180.CrossRefGoogle Scholar
- Stahlberg, R. (2006). Historical overview on plant neurobiology. Plant Signaling & Behavior, 1(1), 6–8.CrossRefGoogle Scholar
- Stahlberg, R., Cleland, R. E., & van Volkenburgh, E. (2006). Slow wave potentials: A propagating electrical signal unique to higher plants. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 291–308). New York, NY: Springer.CrossRefGoogle Scholar
- Stepp, N., Chemero, A., & Turvey, M. (2011). Philosophy for the rest of cognitive science. Topics in Cognitive Science, 3(2), 425–437.CrossRefGoogle Scholar
- Stepp, N., & Turvey, M. (2010). On strong anticipation. Cognitive Systems Research, 11(2), 148–164.CrossRefGoogle Scholar
- Taiz, L., & Zeiger, E. (2010). Plant physiology (5th edn.). Sunderland, MA: Sinauer Associates.Google Scholar
- Takahashi, N., Hirata, Y., Aihara, K., & Mas, P. (2015). A hierarchical multi-oscillator network orchestrates the arabidopsis circadian system. Cell, 163(1), 148–159. doi: 10.1016/j.cell.2015.08.062.CrossRefGoogle Scholar
- Thagard, P. (2009). Why cognitive science needs philosophy and vice versa. Topics in Cognitive Science, 1, 237–254.CrossRefGoogle Scholar
- Trebacz, K., Dziubinska, H., & Krol, E. (2006). Electrical signals in long-distance communication in plants. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communications in plants. Neuronal aspects of plant life (pp. 277–290). New York, NY: Springer.Google Scholar
- Trewavas, A. (2005a). Green plants as intelligent organisms. Trends in Plant Science, 10(9), 413–419.CrossRefGoogle Scholar
- Trewavas, A. (2005b). Plant intelligence. Naturwissenschaften, 92, 401–413.CrossRefGoogle Scholar
- Trewavas, A. (2007). Response to Alpi et al.: Plant neurobiology—all metaphors have value. Trends in Plant Science, 12(6), 231–233.CrossRefGoogle Scholar
- Trewavas, A. (2009). What is plant behaviour? Plant, Cell & Environment, 32(6), 606–616.CrossRefGoogle Scholar
- Trewavas, A. (2014). Plant behaviour and intelligence. Oxford University Press.Google Scholar
- Varela, F., Rosch, E., & Thompson, E. (1991). The embodied mind. Cambridge, MA: MIT Press.Google Scholar
- Vergara-Silva, F. (2003). Plants and the conceptual articulation of evolutionary developmental biology. Biology and Philosophy, 18(2), 249–284.CrossRefGoogle Scholar
- Volkov, A. G. (Ed.). (2006). Plant electrophysiology. Berlin: Springer.Google Scholar
- Wheatherson, B. (2003). What good are counterexamples? Philosophical Studies, 115(1), 1–31.CrossRefGoogle Scholar