Skip to main content
Log in

The philosophy of plant neurobiology: a manifesto

  • S.I.: Neuroscience and Its Philosophy
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

‘Plant neurobiology’ has emerged in recent years as a multidisciplinary endeavor carried out mainly by steady collaboration within the plant sciences. The field proposes a particular approach to the study of plant intelligence by putting forward an integrated view of plant signaling and adaptive behavior. Its objective is to account for the way plants perceive and act in a purposeful manner. But it is not only the plant sciences that constitute plant neurobiology. Resources from philosophy and cognitive science are central to such an interdisciplinary project, if plant neurobiology is to maintain its target well-focused. This manifesto outlines a road map for the establishment and development of a new subject—the Philosophy of Plant Neurobiology—, a new field of research emerging at the intersection of the philosophy of cognitive science and plant neurobiology. The discipline is herewith presented, introducing challenges and novel lines of engagement with the empirical investigation, and providing an explanatory framework and guiding principles that will hopefully ease the integration of research on the quest for plant intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Trewavas’ seminal “Aspects of plant intelligence,” an article that appeared in Annals of Botany in 2003 with 246 citations as of Fall 2015—total downloads of over 50,000 (full-text), and a number of downloads for 2014 that quadruples the average annual download of the 10 years since its publication in 2003—bears witness to the growing attention being paid to the topic.

  2. Almost a century ago, Bose (1926) demonstrated that action potentials connect the petiole and the pulvinus of Mimosa pudica, triggering leave droop by loss of turgor (for a review, see Trewavas 2014).

  3. Despite the fact that the role of calcium, and chloride and potassium as ion components of APs in plants is well known from studies of giant Characean cells (see Calvo 2012, and references therein), there is no single reference to APs in the fifth edition (2010) of Lincoln Taiz and Eduardo Zeiger’s companion to Plant Physiology. Thanks to Franstišek Baluška for pinpointing this omission to me.

  4. Either within a representational cognitive science (Bechtel 2009; 2010), or within an embodied and/or ecological cognitive science (Chemero 2009; Dale et al. 2009)—see Sect. 4, below.

  5. Echoing the distinction between a philosophy of cognitive science and a philosophy in cognitive science made explicit in cognitive science research (Brook 2009), we may say that the discipline comprehends a philosophy of plant neurobiology and a philosophy in plant neurobiology. Dennett’s (2009) and Thagard’s (2009) respective ways of approaching the relation between philosophy and cognitive science is also congenial with the one herewith defended in the domain of plant neurobiology.

  6. To list but a few more diverse areas of research, plant neurobiology would benefit from interaction with the forestry sciences; bio-computing; edaphology; or paleoecology.

  7. A different issue is whether analytic or mechanistic models will be superseded in plant neurobiology by an organismic, non-reductionist explanatory framework or not. It is anything but clear that everyone will be convinced that the project is inherently emergentist. The situation is exactly parallel to that found in the cognitive sciences where different communities understand, or not, the discipline from a reductionist or from an emergentist stance. Dual and hybrid positions, of course, also find room to disagree with both the reductionist and the emergentist extremes, but this is not the place to elaborate further on this issue (thanks to Tony Chemero for bringing this point to my attention).

  8. Carruthers (2004), for instance, has argued somewhat convincingly that ants and bees have minds. Being an open empirical question, we cannot deny on a priori grounds that plants equally possess “minimal minds” (Calvo et al. 2014) in the relevant cognitive sense.

  9. I thank Bill Bechtel for urging me to consider both options in tandem.

  10. Good entry points to the indirect and the direct perception approaches are Rock (1997) and Michaels and Carello (1981), respectively.

  11. Gibson (1979) explains affordances as follows: “The affordances of the environment are what it offers the animal, what it provides or furnishes, either for good or ill. The verb to afford is found in the dictionary, but the noun affordance is not. I have made it up. I mean by it something that refers to both the environment and the animal in a way that no existing term does. It implies the complementarity of the animal and the environment” (p. 127).

  12. According to yet another approach to the notion of anticipation, predictive success does not involve modeling the future at any stage, but is rather a function of actual past behavior (Stepp and Turvey 2010; Stepp et al. 2011). This form of anticipation does not depend on internal modeling, and although cannot be discarded beforehand we shall ignore those for present purposes. Thanks to Tony Chemero for bringing this third possibility to my attention.

  13. A survey of techniques in plant neurobiology, among them Multi-electrode array (MEA) technology, the Vibrating Probe Technique or Electrical Impedance Spectroscopy (EIS), is available at the International Laboratory of Plant Neurobiology (LINV) site: http://www.linv.org.

  14. In addition to the core issues thus far discussed, philosophical reflection can play a number of subsidiary roles in plant neurobiology that range from questions of plant intentionality, consciousness and phenomenology, to topics in ethics and beyond (see Marder 2011, 2012a, b, for an overview).

References

  • Alpi, A., Amrhein, N., Bertl, A., Blatt, M. R., Blumwald, E., Cervone, F., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Science, 12(4), 135–136.

    Article  Google Scholar 

  • Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175(4), 1257–1266.

    Article  Google Scholar 

  • Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C., & Preston, C. A. (2006). Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science, 311(5762), 812–815.

    Article  Google Scholar 

  • Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signal Behavior, 5(2), 87–89.

    Article  Google Scholar 

  • Baluška, F., Hlavacka, Andrej, Mancuso, Stefano, & Barlow, Peter W. (2006). Neurobiological view of plants and their body plan. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 19–35). New York, NY: Springer.

    Chapter  Google Scholar 

  • Baluška, F., & Mancuso, S. (2007). Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Signal Behavior, 2(4), 205–207.

    Article  Google Scholar 

  • Baluška, F., & Mancuso, S. (2009a). Plant neurobiology: From sensory biology, via plant communication, to social plant behavior. Cognitive Processing, 10(Suppl. 1), 3–7.

    Article  Google Scholar 

  • Baluška, F., & Mancuso, S. (2009b). Deep evolutionary origins of neurobiology: Turning the essence of ‘neural’ upside-down. Communicative & Integrative Biology, 2(1), 60–65.

    Article  Google Scholar 

  • Baluška, F., & Mancuso, S. (2009c). Plants and animals: Convergent evolution in action? In F. Baluška (Ed.), Plant-environment interactions: From sensory plant biology to active plant behavior (pp. 285–301). Berlin: Springer.

    Chapter  Google Scholar 

  • Baluška, F., & Mancuso, S. (2013). Root apex transition zone as oscillatory zone. Frontiers in Plant Science, 4, 354.

    Google Scholar 

  • Bastien, R., Bohr, T., Moulia, B., & Douady, S. (2013). Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 755–760.

    Article  Google Scholar 

  • Barlow, P. W. (2008). Reflections on ‘plant neurobiology’. BioSystems, 92(2), 132–147.

    Article  Google Scholar 

  • Bechtel, W. (1993). Integrating sciences by creating new disciplines: The case of cell biology. Biology & Philosophy, 8(3), 277–299.

    Article  Google Scholar 

  • Bechtel, W. (2009). Constructing a philosophy of science of cognitive science. Topics in Cognitive Science, 1(3), 548–569.

    Article  Google Scholar 

  • Bechtel, W. (2010). How can philosophy be a true cognitive science disciplines? Topics in Cognitive Science, 2(3), 357–366.

    Article  Google Scholar 

  • Bechtel, W. (2014). Cognitive biology: Surprising model organisms for cognitive science. In Proceedings of the 36th annual conference of the cognitive science society. Austin, TX: Cognitive Science Society.

  • Bechtel, W., & Herschbach, M. (2010). Philosophy of the cognitive sciences. In Fritz Allhoff (Ed.), Philosophy of the sciences (pp. 237–261). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Bickle (2003) Philosophy and neuroscience. A ruthlessly reductive account. Springer.

  • Bose, J. C. (1926). The Nervous mechanism of plants. London: Longmans, Green and Co.

    Google Scholar 

  • Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115.

    Article  Google Scholar 

  • Bouché, N., Lacombe, B., & Fromm, H. (2003). GABA signalling: A conserved and ubiquitous mechanism. Trends Cell Biology, 13, 607–610.

    Article  Google Scholar 

  • Brenner, E. D., Stahlberg, R., Mancuso, S., Baluška, F., & van Volkenburgh, E. (2007). Plant neurobiology: The gain is more than the name. Trends in Plant Science, 12(7), 285–286.

    Article  Google Scholar 

  • Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J. M., Baluška, F., & van Volkenburgh, E. (2007). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11(8), 413–419.

    Article  Google Scholar 

  • Brook, A. (2009). Philosophy in and philosophy of cognitive science. Topics in Cognitive Science, 1(2), 216–230.

    Article  Google Scholar 

  • Calvo, P. (2007). The quest for cognition in plant neurobiology. Plant Signaling and Behavior, 2(4), 208–211.

    Article  Google Scholar 

  • Calvo, P. (2012). Plant neurobiology: Lessons for the unity of science. In O. Pombo, J. M. Torres, J. Symons, & S. Rahman (Eds.), Special sciences and the unity of science (pp. 121–136). New York, NY: Springer.

    Google Scholar 

  • Calvo, P., & Baluška, F. (2015). Conditions for minimal intelligence across eukaryota: A cognitive science perspective. Frontiers in Psychology, 6, 1329. doi:10.3389/fpsyg.2015.01329.

    Google Scholar 

  • Calvo, P., Baluška, F., & Sims, A. (submitted). ‘Feature detection’ versus ‘predictive coding’ models of plant behavior. Frontiers in Psychology.

  • Calvo, P., & Gomila, A. (2008). Handbook of cognitive science: An embodied approach. Amsterdam: Elsevier Science.

    Google Scholar 

  • Calvo, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root brains and minimal cognition. Adaptive Behavior, 19(3), 155–171.

    Article  Google Scholar 

  • Calvo, P., Martín, E., & Symons, J. (2014). The emergence of systematicity in minimally cognitive agents. In P. Calvo & J. Symons (Eds.), The architecture of cognition: Rethinking Fodor and Pylyshyn’s systematicity challenge (pp. 397–434). Cambridge, MA: MIT Press.

    Google Scholar 

  • Calvo, P., Raja, V. & Lee, D. N. (technical report) Guidance of circumnutation of climbing bean stems: An ecological exploration, MINTLab Technical Report #15-11(1). November 2015.

  • Carello, C., Vaz, D., Blau, J. J. C., & Petrusz, S. C. (2012). Unnerving intelligence. Ecological Psychology, 24(3), 241–264.

    Article  Google Scholar 

  • Carruthers, P. (2004). On being simple minded. American Philosophical Quarterly, 41(3), 205–220.

    Google Scholar 

  • Chamovitz, D. (2012). What a plant knows: A field guide to the senses. New York, NY: Scientific American/Farrar, Staus & Giroux.

    Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Churchland, P. S. (2002). Brain-wise: Studies in neurophilosophy. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. New York: Oxford University Press.

    Google Scholar 

  • Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory pluralism in cognitive science. Cognitive Science, 33(5), 739–742.

    Article  Google Scholar 

  • Dennett, D. (2009). The part of cognitive science that is philosophy. Topics in Cognitive Science, 1, 231–236.

    Article  Google Scholar 

  • Dicke, M., Agrawal, A. A., & Bruin, J. (2003). Plants talk, but are they deaf? Trends in Plant Science, 8(9), 403–405.

    Article  Google Scholar 

  • Dumais, J. (2013). Beyond the sine law of plant gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 391–392.

    Article  Google Scholar 

  • Dyer, F. C., & Dickinson, J. A. (1994). Development of sun compensation by honeybees: How partially experienced bees estimate the sun’s course. Proceedings of the National Academy of Sciences, 91, 4471–4474.

    Article  Google Scholar 

  • Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine neural population responses in the ventral visual stream. The Journal of Neuroscience, 30(49), 16601–16608.

    Article  Google Scholar 

  • Esch, H. E., Zhang, S., Srinivasan, M. V., & Tautz, J. (2001). Honeybee dances communicate distances measured by optic flow. Nature, 411, 581–583.

    Article  Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London, 360(1456), 815–836.

    Article  Google Scholar 

  • Fumerton, R. (1999). A priori philosophy after an a posteriori turn. Midwest Studies in Philosophy, 23(1), 21–33.

    Article  Google Scholar 

  • Gagliano, M., Mancuso, S., & Robert, D. (2012). Towards understanding plant bioacoustics. Trends in Plant Science, 17(6), 323–325.

    Article  Google Scholar 

  • Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63–72.

    Article  Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Gilroy, S. (2008) Plant tropisms. Current Biology, 18, R275–R277.

  • Greenspan, R. J., & Baars, B. J. (2005). Consciousness eclipsed: Jacques Loeb, Ivan P. Pavlov, and the rise of reductionistic biology after 1900. Conscious Cogn, 14, 219–230.

    Article  Google Scholar 

  • Gruntman, M., & Novoplansky, A. (2004). Physiologically-mediated self/nonself discrimination in roots. Proceedings of the National Academy of Sciences of the United States of America, 101, 3863–3867.

    Article  Google Scholar 

  • Hodge, A. (2009). Root decisions. Plant, Cell & Environment, 32(6), 628–640.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229–289.

    Google Scholar 

  • Keijzer, F., van Duijn, M., & Lyon, P. (2013). What nervous systems do: Early evolution, input-output versus skin brain theory. Adaptive Behavior, 21(2), 67–85.

    Article  Google Scholar 

  • Kok, P., Brouwer, G. J., van Gerven, M. A., & de Lange, F. P. (2013). Prior expectations bias sensory representations in visual cortex. The Journal of Neuroscience, 33(41), 16275–16284.

    Article  Google Scholar 

  • Lee, D. N. (1998). Guiding movement by coupling taus. Ecological Psychology, 10(3–4), 221–250.

    Article  Google Scholar 

  • Lee, D. N. (2009). General Tau Theory: Evolution to date. Perception, 38(6), 837–850.

    Article  Google Scholar 

  • Lee, D. N., & Reddish, P. L. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293–294.

    Article  Google Scholar 

  • Lyon, P. (2007). From quorum to cooperation: Lessons from bacterial sociality for evolutionary theory. Studies in History and Philosophy of Biological and Biomedical Sciences, 38, 820–833.

    Article  Google Scholar 

  • Mackie, G. O. (1970). Neuroid conduction and the evolution of conducting tissues. The Quarterly Review of Biology, 45(4), 319–332.

    Article  Google Scholar 

  • Mancuso, S., & Viola, A. (2015). Brilliant green. The surprising history and science of plant intelligence, (Joan Benham, Trans.). Island Press.

  • Marder, M. (2011). Vegetal anti-metaphysics: Learning from plants. Continental Philosophy Review, 44(4), 469–489.

    Article  Google Scholar 

  • Marder, M. (2012a). The life of plants and the limits of empathy. Dialogue, 51(2), 259–273.

    Article  Google Scholar 

  • Marder, M. (2012b). Plant intentionality and the phenomenological framework of plant intelligence. Plant Signaling & Behavior, 7(11), 1–8.

    Article  Google Scholar 

  • Marder, M. (2013). Plant-thinking: A philosophy of vegetal life. New York: Columbia University Press.

    Google Scholar 

  • Mazzolai, B., Laschi, C., Dario, P., Mugnai, S., & Mancuso, S. (2010). The plant as a biomechatronic system. Plant Signaling & Behavior, 5(2), 1–4.

    Article  Google Scholar 

  • Michaels, C. F., & Carello, C. (1981). Direct perception. New Jersey, NJ: Prentice-Hall Inc.

    Google Scholar 

  • Novoplansky, A. (2009). Picking battles wisely: Plant behaviour under competition. Plant, Cell & Environment, 32(6), 726–741.

    Article  Google Scholar 

  • Novoplansky, A. (2016). Future Perception in Plants. In Mihai Nadin (Ed.), Anticipation across disciplines (pp. 57–70). Springer.

  • Ovsepian, S. V., & Vesselkin, N. P. (2014). Wiring prior to firing: The evolutionary rise of electrical and chemical modes of synaptic transmission. Reviews in the Neurosciences, 25(6), 821–832.

    Article  Google Scholar 

  • Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pickard, B. G. (1973). Action potentials in higher plants. The Botanical Review, 39(2), 172–201.

    Article  Google Scholar 

  • Port, R., & Van Gelder, T. (1995). Mind as motion. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extraclassical receptive-field effects. Nature Neuroscience, 2, 79–87.

    Article  Google Scholar 

  • Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. (2008). Ecological psychology: Six principles for an embodied-embedded approach to behavior. In P. Calvo & A. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 161–190). Amsterdam: Elsevier Science.

    Google Scholar 

  • Robbins, P., & Aydede, M. (Eds.). (2009). The Cambridge handbook of situated cognition. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rock, I. (Ed.). (1997). Indirect perception. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ryan, T. J., & Grant, S. G. (2009). The origin and evolution of synapses. Nature Reviews Neuroscience, 10(10), 701–712.

    Article  Google Scholar 

  • Schenk, H. J., Callaway, R. M., & Mahall, B. E. (1999). Spatial root segregation: Are plants territorial? Advances in Ecological Research, 28, 145–180.

    Article  Google Scholar 

  • Stahlberg, R. (2006). Historical overview on plant neurobiology. Plant Signaling & Behavior, 1(1), 6–8.

    Article  Google Scholar 

  • Stahlberg, R., Cleland, R. E., & van Volkenburgh, E. (2006). Slow wave potentials: A propagating electrical signal unique to higher plants. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 291–308). New York, NY: Springer.

    Chapter  Google Scholar 

  • Stepp, N., Chemero, A., & Turvey, M. (2011). Philosophy for the rest of cognitive science. Topics in Cognitive Science, 3(2), 425–437.

    Article  Google Scholar 

  • Stepp, N., & Turvey, M. (2010). On strong anticipation. Cognitive Systems Research, 11(2), 148–164.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2010). Plant physiology (5th edn.). Sunderland, MA: Sinauer Associates.

  • Takahashi, N., Hirata, Y., Aihara, K., & Mas, P. (2015). A hierarchical multi-oscillator network orchestrates the arabidopsis circadian system. Cell, 163(1), 148–159. doi:10.1016/j.cell.2015.08.062.

    Article  Google Scholar 

  • Thagard, P. (2009). Why cognitive science needs philosophy and vice versa. Topics in Cognitive Science, 1, 237–254.

    Article  Google Scholar 

  • Trebacz, K., Dziubinska, H., & Krol, E. (2006). Electrical signals in long-distance communication in plants. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communications in plants. Neuronal aspects of plant life (pp. 277–290). New York, NY: Springer.

    Google Scholar 

  • Trewavas, A. (2005a). Green plants as intelligent organisms. Trends in Plant Science, 10(9), 413–419.

    Article  Google Scholar 

  • Trewavas, A. (2005b). Plant intelligence. Naturwissenschaften, 92, 401–413.

    Article  Google Scholar 

  • Trewavas, A. (2007). Response to Alpi et al.: Plant neurobiology—all metaphors have value. Trends in Plant Science, 12(6), 231–233.

    Article  Google Scholar 

  • Trewavas, A. (2009). What is plant behaviour? Plant, Cell & Environment, 32(6), 606–616.

    Article  Google Scholar 

  • Trewavas, A. (2014). Plant behaviour and intelligence. Oxford University Press.

  • Varela, F., Rosch, E., & Thompson, E. (1991). The embodied mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Vergara-Silva, F. (2003). Plants and the conceptual articulation of evolutionary developmental biology. Biology and Philosophy, 18(2), 249–284.

    Article  Google Scholar 

  • Volkov, A. G. (Ed.). (2006). Plant electrophysiology. Berlin: Springer.

    Google Scholar 

  • Wheatherson, B. (2003). What good are counterexamples? Philosophical Studies, 115(1), 1–31.

    Article  Google Scholar 

Download references

Acknowledgments

The research reported here was supported by Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, through project 11944/PHCS/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paco Calvo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, P. The philosophy of plant neurobiology: a manifesto. Synthese 193, 1323–1343 (2016). https://doi.org/10.1007/s11229-016-1040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-016-1040-1

Keywords

Navigation