, Volume 193, Issue 5, pp 1323–1343 | Cite as

The philosophy of plant neurobiology: a manifesto

  • Paco CalvoEmail author
S.I.: Neuroscience and Its Philosophy


‘Plant neurobiology’ has emerged in recent years as a multidisciplinary endeavor carried out mainly by steady collaboration within the plant sciences. The field proposes a particular approach to the study of plant intelligence by putting forward an integrated view of plant signaling and adaptive behavior. Its objective is to account for the way plants perceive and act in a purposeful manner. But it is not only the plant sciences that constitute plant neurobiology. Resources from philosophy and cognitive science are central to such an interdisciplinary project, if plant neurobiology is to maintain its target well-focused. This manifesto outlines a road map for the establishment and development of a new subject—the Philosophy of Plant Neurobiology—, a new field of research emerging at the intersection of the philosophy of cognitive science and plant neurobiology. The discipline is herewith presented, introducing challenges and novel lines of engagement with the empirical investigation, and providing an explanatory framework and guiding principles that will hopefully ease the integration of research on the quest for plant intelligence.


Plant neurobiology (philosophy of) Plant intelligence Cognitive science 



The research reported here was supported by Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, through project 11944/PHCS/09.


  1. Alpi, A., Amrhein, N., Bertl, A., Blatt, M. R., Blumwald, E., Cervone, F., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Science, 12(4), 135–136.CrossRefGoogle Scholar
  2. Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175(4), 1257–1266.CrossRefGoogle Scholar
  3. Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C., & Preston, C. A. (2006). Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science, 311(5762), 812–815.CrossRefGoogle Scholar
  4. Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signal Behavior, 5(2), 87–89.CrossRefGoogle Scholar
  5. Baluška, F., Hlavacka, Andrej, Mancuso, Stefano, & Barlow, Peter W. (2006). Neurobiological view of plants and their body plan. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 19–35). New York, NY: Springer.CrossRefGoogle Scholar
  6. Baluška, F., & Mancuso, S. (2007). Plant neurobiology as a paradigm shift not only in the plant sciences. Plant Signal Behavior, 2(4), 205–207.CrossRefGoogle Scholar
  7. Baluška, F., & Mancuso, S. (2009a). Plant neurobiology: From sensory biology, via plant communication, to social plant behavior. Cognitive Processing, 10(Suppl. 1), 3–7.CrossRefGoogle Scholar
  8. Baluška, F., & Mancuso, S. (2009b). Deep evolutionary origins of neurobiology: Turning the essence of ‘neural’ upside-down. Communicative & Integrative Biology, 2(1), 60–65.CrossRefGoogle Scholar
  9. Baluška, F., & Mancuso, S. (2009c). Plants and animals: Convergent evolution in action? In F. Baluška (Ed.), Plant-environment interactions: From sensory plant biology to active plant behavior (pp. 285–301). Berlin: Springer.CrossRefGoogle Scholar
  10. Baluška, F., & Mancuso, S. (2013). Root apex transition zone as oscillatory zone. Frontiers in Plant Science, 4, 354.Google Scholar
  11. Bastien, R., Bohr, T., Moulia, B., & Douady, S. (2013). Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 755–760.CrossRefGoogle Scholar
  12. Barlow, P. W. (2008). Reflections on ‘plant neurobiology’. BioSystems, 92(2), 132–147.CrossRefGoogle Scholar
  13. Bechtel, W. (1993). Integrating sciences by creating new disciplines: The case of cell biology. Biology & Philosophy, 8(3), 277–299.CrossRefGoogle Scholar
  14. Bechtel, W. (2009). Constructing a philosophy of science of cognitive science. Topics in Cognitive Science, 1(3), 548–569.CrossRefGoogle Scholar
  15. Bechtel, W. (2010). How can philosophy be a true cognitive science disciplines? Topics in Cognitive Science, 2(3), 357–366.CrossRefGoogle Scholar
  16. Bechtel, W. (2014). Cognitive biology: Surprising model organisms for cognitive science. In Proceedings of the 36th annual conference of the cognitive science society. Austin, TX: Cognitive Science Society.Google Scholar
  17. Bechtel, W., & Herschbach, M. (2010). Philosophy of the cognitive sciences. In Fritz Allhoff (Ed.), Philosophy of the sciences (pp. 237–261). Oxford: Blackwell.CrossRefGoogle Scholar
  18. Bickle (2003) Philosophy and neuroscience. A ruthlessly reductive account. Springer.Google Scholar
  19. Bose, J. C. (1926). The Nervous mechanism of plants. London: Longmans, Green and Co.Google Scholar
  20. Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115.CrossRefGoogle Scholar
  21. Bouché, N., Lacombe, B., & Fromm, H. (2003). GABA signalling: A conserved and ubiquitous mechanism. Trends Cell Biology, 13, 607–610.CrossRefGoogle Scholar
  22. Brenner, E. D., Stahlberg, R., Mancuso, S., Baluška, F., & van Volkenburgh, E. (2007). Plant neurobiology: The gain is more than the name. Trends in Plant Science, 12(7), 285–286.CrossRefGoogle Scholar
  23. Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J. M., Baluška, F., & van Volkenburgh, E. (2007). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11(8), 413–419.CrossRefGoogle Scholar
  24. Brook, A. (2009). Philosophy in and philosophy of cognitive science. Topics in Cognitive Science, 1(2), 216–230.CrossRefGoogle Scholar
  25. Calvo, P. (2007). The quest for cognition in plant neurobiology. Plant Signaling and Behavior, 2(4), 208–211.CrossRefGoogle Scholar
  26. Calvo, P. (2012). Plant neurobiology: Lessons for the unity of science. In O. Pombo, J. M. Torres, J. Symons, & S. Rahman (Eds.), Special sciences and the unity of science (pp. 121–136). New York, NY: Springer.Google Scholar
  27. Calvo, P., & Baluška, F. (2015). Conditions for minimal intelligence across eukaryota: A cognitive science perspective. Frontiers in Psychology, 6, 1329. doi: 10.3389/fpsyg.2015.01329.Google Scholar
  28. Calvo, P., Baluška, F., & Sims, A. (submitted). ‘Feature detection’ versus ‘predictive coding’ models of plant behavior. Frontiers in Psychology.Google Scholar
  29. Calvo, P., & Gomila, A. (2008). Handbook of cognitive science: An embodied approach. Amsterdam: Elsevier Science.Google Scholar
  30. Calvo, P., & Keijzer, F. (2011). Plants: Adaptive behavior, root brains and minimal cognition. Adaptive Behavior, 19(3), 155–171.CrossRefGoogle Scholar
  31. Calvo, P., Martín, E., & Symons, J. (2014). The emergence of systematicity in minimally cognitive agents. In P. Calvo & J. Symons (Eds.), The architecture of cognition: Rethinking Fodor and Pylyshyn’s systematicity challenge (pp. 397–434). Cambridge, MA: MIT Press.Google Scholar
  32. Calvo, P., Raja, V. & Lee, D. N. (technical report) Guidance of circumnutation of climbing bean stems: An ecological exploration, MINTLab Technical Report #15-11(1). November 2015.Google Scholar
  33. Carello, C., Vaz, D., Blau, J. J. C., & Petrusz, S. C. (2012). Unnerving intelligence. Ecological Psychology, 24(3), 241–264.CrossRefGoogle Scholar
  34. Carruthers, P. (2004). On being simple minded. American Philosophical Quarterly, 41(3), 205–220.Google Scholar
  35. Chamovitz, D. (2012). What a plant knows: A field guide to the senses. New York, NY: Scientific American/Farrar, Staus & Giroux.Google Scholar
  36. Chemero, A. (2009). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
  37. Churchland, P. S. (1986). Neurophilosophy: Toward a unified science of the mind-brain. Cambridge, MA: MIT Press.Google Scholar
  38. Churchland, P. S. (2002). Brain-wise: Studies in neurophilosophy. Cambridge, MA: MIT Press.Google Scholar
  39. Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. New York: Oxford University Press.Google Scholar
  40. Dale, R., Dietrich, E., & Chemero, A. (2009). Explanatory pluralism in cognitive science. Cognitive Science, 33(5), 739–742.CrossRefGoogle Scholar
  41. Dennett, D. (2009). The part of cognitive science that is philosophy. Topics in Cognitive Science, 1, 231–236.CrossRefGoogle Scholar
  42. Dicke, M., Agrawal, A. A., & Bruin, J. (2003). Plants talk, but are they deaf? Trends in Plant Science, 8(9), 403–405.CrossRefGoogle Scholar
  43. Dumais, J. (2013). Beyond the sine law of plant gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 391–392.CrossRefGoogle Scholar
  44. Dyer, F. C., & Dickinson, J. A. (1994). Development of sun compensation by honeybees: How partially experienced bees estimate the sun’s course. Proceedings of the National Academy of Sciences, 91, 4471–4474.CrossRefGoogle Scholar
  45. Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine neural population responses in the ventral visual stream. The Journal of Neuroscience, 30(49), 16601–16608.CrossRefGoogle Scholar
  46. Esch, H. E., Zhang, S., Srinivasan, M. V., & Tautz, J. (2001). Honeybee dances communicate distances measured by optic flow. Nature, 411, 581–583.CrossRefGoogle Scholar
  47. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London, 360(1456), 815–836.CrossRefGoogle Scholar
  48. Fumerton, R. (1999). A priori philosophy after an a posteriori turn. Midwest Studies in Philosophy, 23(1), 21–33.CrossRefGoogle Scholar
  49. Gagliano, M., Mancuso, S., & Robert, D. (2012). Towards understanding plant bioacoustics. Trends in Plant Science, 17(6), 323–325.CrossRefGoogle Scholar
  50. Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63–72.CrossRefGoogle Scholar
  51. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
  52. Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
  53. Gilroy, S. (2008) Plant tropisms. Current Biology, 18, R275–R277.Google Scholar
  54. Greenspan, R. J., & Baars, B. J. (2005). Consciousness eclipsed: Jacques Loeb, Ivan P. Pavlov, and the rise of reductionistic biology after 1900. Conscious Cogn, 14, 219–230.CrossRefGoogle Scholar
  55. Gruntman, M., & Novoplansky, A. (2004). Physiologically-mediated self/nonself discrimination in roots. Proceedings of the National Academy of Sciences of the United States of America, 101, 3863–3867.CrossRefGoogle Scholar
  56. Hodge, A. (2009). Root decisions. Plant, Cell & Environment, 32(6), 628–640.CrossRefGoogle Scholar
  57. Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229–289.Google Scholar
  58. Keijzer, F., van Duijn, M., & Lyon, P. (2013). What nervous systems do: Early evolution, input-output versus skin brain theory. Adaptive Behavior, 21(2), 67–85.CrossRefGoogle Scholar
  59. Kok, P., Brouwer, G. J., van Gerven, M. A., & de Lange, F. P. (2013). Prior expectations bias sensory representations in visual cortex. The Journal of Neuroscience, 33(41), 16275–16284.CrossRefGoogle Scholar
  60. Lee, D. N. (1998). Guiding movement by coupling taus. Ecological Psychology, 10(3–4), 221–250.CrossRefGoogle Scholar
  61. Lee, D. N. (2009). General Tau Theory: Evolution to date. Perception, 38(6), 837–850.CrossRefGoogle Scholar
  62. Lee, D. N., & Reddish, P. L. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293–294.CrossRefGoogle Scholar
  63. Lyon, P. (2007). From quorum to cooperation: Lessons from bacterial sociality for evolutionary theory. Studies in History and Philosophy of Biological and Biomedical Sciences, 38, 820–833.CrossRefGoogle Scholar
  64. Mackie, G. O. (1970). Neuroid conduction and the evolution of conducting tissues. The Quarterly Review of Biology, 45(4), 319–332.CrossRefGoogle Scholar
  65. Mancuso, S., & Viola, A. (2015). Brilliant green. The surprising history and science of plant intelligence, (Joan Benham, Trans.). Island Press.Google Scholar
  66. Marder, M. (2011). Vegetal anti-metaphysics: Learning from plants. Continental Philosophy Review, 44(4), 469–489.CrossRefGoogle Scholar
  67. Marder, M. (2012a). The life of plants and the limits of empathy. Dialogue, 51(2), 259–273.CrossRefGoogle Scholar
  68. Marder, M. (2012b). Plant intentionality and the phenomenological framework of plant intelligence. Plant Signaling & Behavior, 7(11), 1–8.CrossRefGoogle Scholar
  69. Marder, M. (2013). Plant-thinking: A philosophy of vegetal life. New York: Columbia University Press.Google Scholar
  70. Mazzolai, B., Laschi, C., Dario, P., Mugnai, S., & Mancuso, S. (2010). The plant as a biomechatronic system. Plant Signaling & Behavior, 5(2), 1–4.CrossRefGoogle Scholar
  71. Michaels, C. F., & Carello, C. (1981). Direct perception. New Jersey, NJ: Prentice-Hall Inc.Google Scholar
  72. Novoplansky, A. (2009). Picking battles wisely: Plant behaviour under competition. Plant, Cell & Environment, 32(6), 726–741.CrossRefGoogle Scholar
  73. Novoplansky, A. (2016). Future Perception in Plants. In Mihai Nadin (Ed.), Anticipation across disciplines (pp. 57–70). Springer.Google Scholar
  74. Ovsepian, S. V., & Vesselkin, N. P. (2014). Wiring prior to firing: The evolutionary rise of electrical and chemical modes of synaptic transmission. Reviews in the Neurosciences, 25(6), 821–832.CrossRefGoogle Scholar
  75. Pfeifer, R., & Scheier, C. (1999). Understanding Intelligence. Cambridge, MA: MIT Press.Google Scholar
  76. Pickard, B. G. (1973). Action potentials in higher plants. The Botanical Review, 39(2), 172–201.CrossRefGoogle Scholar
  77. Port, R., & Van Gelder, T. (1995). Mind as motion. Cambridge, MA: MIT Press.Google Scholar
  78. Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extraclassical receptive-field effects. Nature Neuroscience, 2, 79–87.CrossRefGoogle Scholar
  79. Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. (2008). Ecological psychology: Six principles for an embodied-embedded approach to behavior. In P. Calvo & A. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 161–190). Amsterdam: Elsevier Science.Google Scholar
  80. Robbins, P., & Aydede, M. (Eds.). (2009). The Cambridge handbook of situated cognition. Cambridge, MA: Cambridge University Press.Google Scholar
  81. Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.Google Scholar
  82. Rock, I. (Ed.). (1997). Indirect perception. Cambridge, MA: MIT Press.Google Scholar
  83. Ryan, T. J., & Grant, S. G. (2009). The origin and evolution of synapses. Nature Reviews Neuroscience, 10(10), 701–712.CrossRefGoogle Scholar
  84. Schenk, H. J., Callaway, R. M., & Mahall, B. E. (1999). Spatial root segregation: Are plants territorial? Advances in Ecological Research, 28, 145–180.CrossRefGoogle Scholar
  85. Stahlberg, R. (2006). Historical overview on plant neurobiology. Plant Signaling & Behavior, 1(1), 6–8.CrossRefGoogle Scholar
  86. Stahlberg, R., Cleland, R. E., & van Volkenburgh, E. (2006). Slow wave potentials: A propagating electrical signal unique to higher plants. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 291–308). New York, NY: Springer.CrossRefGoogle Scholar
  87. Stepp, N., Chemero, A., & Turvey, M. (2011). Philosophy for the rest of cognitive science. Topics in Cognitive Science, 3(2), 425–437.CrossRefGoogle Scholar
  88. Stepp, N., & Turvey, M. (2010). On strong anticipation. Cognitive Systems Research, 11(2), 148–164.CrossRefGoogle Scholar
  89. Taiz, L., & Zeiger, E. (2010). Plant physiology (5th edn.). Sunderland, MA: Sinauer Associates.Google Scholar
  90. Takahashi, N., Hirata, Y., Aihara, K., & Mas, P. (2015). A hierarchical multi-oscillator network orchestrates the arabidopsis circadian system. Cell, 163(1), 148–159. doi: 10.1016/j.cell.2015.08.062.CrossRefGoogle Scholar
  91. Thagard, P. (2009). Why cognitive science needs philosophy and vice versa. Topics in Cognitive Science, 1, 237–254.CrossRefGoogle Scholar
  92. Trebacz, K., Dziubinska, H., & Krol, E. (2006). Electrical signals in long-distance communication in plants. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communications in plants. Neuronal aspects of plant life (pp. 277–290). New York, NY: Springer.Google Scholar
  93. Trewavas, A. (2005a). Green plants as intelligent organisms. Trends in Plant Science, 10(9), 413–419.CrossRefGoogle Scholar
  94. Trewavas, A. (2005b). Plant intelligence. Naturwissenschaften, 92, 401–413.CrossRefGoogle Scholar
  95. Trewavas, A. (2007). Response to Alpi et al.: Plant neurobiology—all metaphors have value. Trends in Plant Science, 12(6), 231–233.CrossRefGoogle Scholar
  96. Trewavas, A. (2009). What is plant behaviour? Plant, Cell & Environment, 32(6), 606–616.CrossRefGoogle Scholar
  97. Trewavas, A. (2014). Plant behaviour and intelligence. Oxford University Press.Google Scholar
  98. Varela, F., Rosch, E., & Thompson, E. (1991). The embodied mind. Cambridge, MA: MIT Press.Google Scholar
  99. Vergara-Silva, F. (2003). Plants and the conceptual articulation of evolutionary developmental biology. Biology and Philosophy, 18(2), 249–284.CrossRefGoogle Scholar
  100. Volkov, A. G. (Ed.). (2006). Plant electrophysiology. Berlin: Springer.Google Scholar
  101. Wheatherson, B. (2003). What good are counterexamples? Philosophical Studies, 115(1), 1–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Minimal Intelligence Lab (MINT Lab), Department of PhilosophyUniversity of MurciaMurciaSpain

Personalised recommendations