Advertisement

Synthese

, Volume 194, Issue 6, pp 1967–1988 | Cite as

Is genetic drift a force?

  • Charles H. Pence
Article

Abstract

One hotly debated philosophical question in the analysis of evolutionary theory concerns whether or not evolution and the various factors which constitute it (selection, drift, mutation, and so on) may profitably be considered as analogous to “forces” in the traditional, Newtonian sense. Several compelling arguments assert that the force picture is incoherent, due to the peculiar nature of genetic drift. I consider two of those arguments here—that drift lacks a predictable direction, and that drift is constitutive of evolutionary systems—and show that they both fail to demonstrate that a view of genetic drift as a force is untenable. I go on to diagnose the reasons for the stubborn persistence of this problem, considering two open philosophical issues and offering some preliminary arguments in support of the force metaphor.

Keywords

Evolutionary theory Genetic drift Force Causation  Brownian motion 

Notes

Acknowledgments

Special thanks to an audience at the APA Eastern Division Meeting, 2012, and particularly my commentators at that meeting, Lindley Darden and Lindsay Craig, without whom several of the best ideas here would be missing. Helpful comments were also provided at the APA by Tyler Curtain, Marc Lange, Massimo Pigliucci, and Beth Preston. Thanks as well to an audience at the 2012 PSA, especially Joshua Filler and Michael Goldsby, and an audience at the Notre Dame History and Philosophy of Science Colloquium, especially Anjan Chakravartty, Melinda Gormley, Christopher Hamlin, Pablo Ruiz de Olano, and Tom Stapleford. Finally, thanks to Edward Jurkowitz, Roberta Millstein, Grant Ramsey, and six anonymous referees for comments on various drafts of this paper. As usual, commentary should not be taken to imply endorsement, and all flaws are undoubtedly mine.

References

  1. Barros, D. B. (2008). Natural selection as a mechanism. Philosophy of Science, 75(3), 306–322. doi: 10.1086/593075.CrossRefGoogle Scholar
  2. Batterman, R. W. (1995). Theories between theories: Asymptotic limiting intertheoretic relations. Synthese, 103(2), 171–201. doi: 10.1007/BF01090047.CrossRefGoogle Scholar
  3. Beatty, J. H. (1984). Chance and natural selection. Philosophy of Science, 51, 183–211. doi: 10.1086/289159.CrossRefGoogle Scholar
  4. Beatty, J. H. (1992). Random drift. In E. F. Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 273–281). Cambridge, MA: Harvard University Press.Google Scholar
  5. Bigelow, J., Ellis, B., & Pargetter, R. (1988). Forces. Philosophy of Science, 55(4), 614–630. doi: 10.1086/289464.CrossRefGoogle Scholar
  6. Brandon, R. N. (2005). The difference between selection and drift: A reply to Millstein. Biology & Philosophy, 20(1), 153–170. doi: 10.1007/s10539-004-1070-9.CrossRefGoogle Scholar
  7. Brandon, R. N. (2006). The principle of drift: Biology’s first law. Journal of Philosophy, 103(7), 319–335.CrossRefGoogle Scholar
  8. Brandon, R. N. (2010). A non-Newtonian model of evolution: The ZFEL view. Philosophy of Science, 77(5), 702–715. doi: 10.1086/656901.CrossRefGoogle Scholar
  9. Brandon, R. N., & Carson, S. (1996). The indeterministic character of evolutionary theory: No “No hidden variables proof” but no room for determinism either. Philosophy of Science, 63(3), 315–337. doi: 10.1086/289915.CrossRefGoogle Scholar
  10. Carroll, S. B., Grenier, J., & Weatherbee, S. (2001). From DNA to diversity: Molecular genetics and the evolution of animal design. Malden, MA: Blackwell.Google Scholar
  11. Creary, L. G. (1981). Causal explanation and the reality of natural component forces. Pacific Philosophical Quarterly, 62, 148–157.Google Scholar
  12. Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. Caldwell, NJ: Blackburn Press.Google Scholar
  13. de Jong, G. (1994). The fitness of fitness concepts and the description of natural selection. Quarterly Review of Biology, 69(1), 3–29. doi: 10.1086/418431.CrossRefGoogle Scholar
  14. Depew, D. J. (2013). Conceptual change and the rhetoric of evolutionary theory: ‘force talk’ as a case study and challenge for science pedagogy. In K. Kampourakis (Ed.), The philosophy of biology: A companion for educators (pp. 121–144). Dordrecht: Springer.CrossRefGoogle Scholar
  15. DesAutels, L. (2015). Toward a propensity interpretation of stochastic mechanism for the life sciences. Synthese. doi: 10.1007/s11229-015-0694-4.
  16. Earman, J., & Friedman, M. (1973). The meaning and status of Newton’s law of inertia and the nature of gravitational forces. Philosophy of Science, 40(3), 329–359.CrossRefGoogle Scholar
  17. Ellis, B. (1963). Universal and differential forces. British Journal for the Philosophy of Science, 14(55), 177–194. doi: 10.1093/bjps/XIV.55.177.CrossRefGoogle Scholar
  18. Ellis, B. (1976). The existence of forces. Studies in History and Philosophy of Science, 7(2), 171–185. doi: 10.1016/0039-3681(76)90015-7.CrossRefGoogle Scholar
  19. Filler, J. (2009). Newtonian forces and evolutionary biology: A problem and solution for extending the force interpretation. Philosophy of Science, 76, 774–783. doi: 10.1086/605799.CrossRefGoogle Scholar
  20. Forber, P., & Reisman, K. (2007). Can there be stochastic evolutionary causes? Philosophy of Science, 74(5), 616–627. doi: 10.1086/525608.CrossRefGoogle Scholar
  21. Forster, M. R. (1988). Unification, explanation, and the composition of causes in Newtonian mechanics. Studies in History and Philosophy of Science, 19(1), 55–101. doi: 10.1016/0039-3681(88)90020-9.CrossRefGoogle Scholar
  22. Gildenhuys, P. (2009). An explication of the causal dimension of drift. British Journal for the Philosophy of Science, 60(3), 521–555. doi: 10.1093/bjps/axp019.CrossRefGoogle Scholar
  23. Glennan, S. (2009). Productivity, relevance and natural selection. Biology & Philosophy, 24(3), 325–339. doi: 10.1007/s10539-008-9137-7.CrossRefGoogle Scholar
  24. Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sunderland, MA: Sinauer Associates.Google Scholar
  25. Heil, J. (1999). Multiple realizability. American Philosophical Quarterly, 36(3), 189–208. doi: 10.2307/20009964.Google Scholar
  26. Heil, J. (2003). Levels of reality. Ratio, 16(3), 205–221. doi: 10.1111/1467-9329.00218.CrossRefGoogle Scholar
  27. Hesse, M. B. (1959). [Review of] Concepts of force: A study in the foundations of dynamics. By Max Jammer. British Journal for the Philosophy of Science, 10(37), 69–73. doi: 10.1093/bjps/X.37.69.CrossRefGoogle Scholar
  28. Hitchcock, C., & Velasco, J. D. (2014). Evolutionary and Newtonian forces. Ergo, 1. doi: 10.3998/ergo.12405314.0001.002.
  29. Hodge, M. J. S. (1987). Natural selection as a causal, empirical, and probabilistic theory, Volume 2: Ideas in the sciences. In L. Krüger, G. Gigerenzer, & M. S. Morgan (Eds.), The probabilistic revolution (pp. 233–270). Cambridge, MA: Bradford Books.Google Scholar
  30. Huilgol, R. R., & Phan-Thien, N. (1997). Fluid mechanics of viscoelasticity. Amsterdam: Elsevier.Google Scholar
  31. Huneman, P. (2012). Natural selection: A case for the counterfactual approach. Erkenntnis, 76(2), 171–194. doi: 10.1007/s10670-011-9306-y.CrossRefGoogle Scholar
  32. Hüttemann, A. (2009). Dispositions in physics. In G. Damschen, R. Schnepf, & K. Stueber (Eds.), Debating dispositions (pp. 223–237). Berlin: Walter de Gruyter.Google Scholar
  33. Jablonski, D. (2005). Mass extinctions and macroevolution. Paleobiology, 31(2), 192–210.CrossRefGoogle Scholar
  34. Jammer, M. (1957). Concepts of force: A study in the foundations of dynamics. Cambridge, MA: Harvard University Press.Google Scholar
  35. Kim, J. (2002). The layered model: Metaphysical considerations. Philosophical Explorations, 5(1), 2–20. doi: 10.1080/10002002018538719.CrossRefGoogle Scholar
  36. Lemons, D. S., & Gythiel, A. (1997). Paul Langevin’s 1908 paper “On the theory of Brownian motion” [“Sur la théorie du mouvement brownien,” Comptes Rendus de l’Académie des Sciences (Paris), 146, 530–533 (1908)]. American Journal of Physics, 65(11), 1079–1081. doi: 10.1119/1.18725.
  37. Lewens, T. (2010). Natural selection then and now. Biological Reviews, 85(4), 829–835. doi: 10.1111/j.1469-185X.2010.00128.x.Google Scholar
  38. Lewis, R. (1997). Life. Boston: WCB/McGraw-Hill.Google Scholar
  39. Lewontin, R. C. (1964). The interaction of selection and linkage: I. General considerations; heterotic models. Genetics, 49(1), 49–67.Google Scholar
  40. Lewontin, R. C., & Kojima, K. (1960). The evolutionary dynamics of complex polymorphisms. Evolution, 14(4), 458–472.Google Scholar
  41. Lynch, M., Conery, J., & Burger, R. (1995). Mutation accumulation and the extinction of small populations. American Naturalist, 146(4), 489–518.CrossRefGoogle Scholar
  42. Lyttle, T. W. (1993). Cheaters sometimes prosper: Distortion of Mendelian segregation by meiotic drive. Trends in Genetics, 9(6), 205–210. doi: 10.1016/0168-9525(93)90120-7.CrossRefGoogle Scholar
  43. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25. doi: 10.1086/392759.CrossRefGoogle Scholar
  44. Mani, G. S., & Clarke, B. C. (1990). Mutational order: A major stochastic process in evolution. Proceedings of the Royal Society of London B: Biological Sciences, 240(1297), 29–37.CrossRefGoogle Scholar
  45. Massin, O. (2009). The metaphysics of forces. Dialectica, 63(4), 555–589. doi: 10.1111/j.1746-8361.2009.01213.x.CrossRefGoogle Scholar
  46. Matthen, M., & Ariew, A. (2002). Two ways of thinking about fitness and natural selection. Journal of Philosophy, 99(2), 55–83.CrossRefGoogle Scholar
  47. Matthen, M., & Ariew, A. (2009). Selection and causation. Philosophy of Science, 76(2), 201–224. doi: 10.1086/648102.CrossRefGoogle Scholar
  48. Maudlin, T. (2004). Causation, counterfactuals, and the third factor. In J. D. Collins, N. Hall, & L. A. Paul (Eds.), Causation and counterfactuals (pp. 419–443). Cambridge, MA: MIT Press.Google Scholar
  49. McShea, D. W. (1996). Metazoan complexity and evolution: Is there a trend? Evolution, 50(2), 477–492.Google Scholar
  50. McShea, D. W. (2005). The evolution of complexity without natural selection, a possible large-scale trend of the fourth kind. Paleobiology, 31(2), 146–156.CrossRefGoogle Scholar
  51. McShea, D. W., & Brandon, R. N. (2010). Biology’s first law: The tendency for diversity and complexity to increase in evolutionary systems. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  52. Merlin, F. (2010). Evolutionary chance mutation: A defense of the modern synthesis’ consensus view. Philosophy and Theory in Biology, 2, e103.CrossRefGoogle Scholar
  53. Millstein, R. L. (2002). Are random drift and natural selection conceptually distinct? Biology & Philosophy, 17, 33–53. doi: 10.1023/A:1012990800358.CrossRefGoogle Scholar
  54. Millstein, R. L. (2005). Selection vs. drift: A response to Brandon’s reply. Biology & Philosophy, 20(1), 171–175. doi: 10.1007/s10539-004-6047-1.CrossRefGoogle Scholar
  55. Millstein, R. L. (2006). Natural selection as a population-level causal process. British Journal for the Philosophy of Science, 57(4), 627–653. doi: 10.1093/bjps/axl025.CrossRefGoogle Scholar
  56. Millstein, R. L. (2013). Natural selection and causal productivity. In H. K. Chao, S. T. Chen, & R. L. Millstein (Eds.), Mechanism and causality in biology and economics (pp. 147–163). New York: Springer.CrossRefGoogle Scholar
  57. Pence, C. H., & Ramsey, G. (2013). A new foundation for the propensity interpretation of fitness. British Journal for the Philosophy of Science, 64(4), 851–881. doi: 10.1093/bjps/axs037.CrossRefGoogle Scholar
  58. Perrin, J. B. (1909). Mouvement brownien et réalité moléculaire. Annales de Chimie et de Physique, VIII(18), 5–114.Google Scholar
  59. Pigliucci, M. (2010). Okasha’s evolution and the levels of selection: Toward a broader conception of theoretical biology. Biology & Philosophy, 25(3), 405–415. doi: 10.1007/s10539-010-9197-3.CrossRefGoogle Scholar
  60. Pigliucci, M., & Kaplan, J. M. (2006). Making sense of evolution: The conceptual foundations of evolutionary theory. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  61. Ramsey, G. (2013). Driftability. Synthese, 190(17), 3909–3928. doi: 10.1007/s11229-012-0232-6.CrossRefGoogle Scholar
  62. Reisman, K., & Forber, P. (2005). Manipulation and the causes of evolution. Philosophy of Science, 72, 1113–1123. doi: 10.1086/508120.CrossRefGoogle Scholar
  63. Rosenberg, A. (2001). Discussion note: Indeterminism, probability, and randomness in evolutionary theory. Philosophy of Science, 68(4), 536–544. doi: 10.1086/392941.CrossRefGoogle Scholar
  64. Rupert, R. D. (2008). Ceteris paribus laws, component forces, and the nature of special-science properties. Noûs, 42(3), 349–380. doi: 10.1111/j.1468-0068.2008.00685.x.CrossRefGoogle Scholar
  65. Shapiro, L., & Sober, E. (2007). Epiphenomenalism-The dos and the don’ts. In G. Wolters & P. Machamer (Eds.), Thinking about causes: From Greek philosophy to modern physics (pp. 235–264). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  66. Shpak, M., & Proulx, S. R. (2007). The role of life cycle and migration in selection for variance in offspring number. Bulletin of Mathematical Biology, 69(3), 837–860. doi: 10.1007/s11538-006-9164-y.CrossRefGoogle Scholar
  67. Sober, E. (1984). The nature of selection. Cambridge, MA: The MIT Press.Google Scholar
  68. Stephens, C. (2004). Selection, drift, and the “forces” of evolution. Philosophy of Science, 71(4), 550–570. doi: 10.1086/423751.CrossRefGoogle Scholar
  69. Stephens, C. (2010). Forces and causes in evolutionary theory. Philosophy of Science, 77(5), 716–727. doi: 10.1086/656821.CrossRefGoogle Scholar
  70. Sterelny, K. (2003). Last will and testament: Stephen Jay Gould’s the structure of evolutionary theory. Philosophy of Science, 70(2), 255–263. doi: 10.1086/375466.CrossRefGoogle Scholar
  71. Strickberger, M. W. (1968). Genetics. New York: Macmillan.Google Scholar
  72. van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  73. Walsh, D. M. (2007). The pomp of superfluous causes: The interpretation of evolutionary theory. Philosophy of Science, 74(3), 281–303. doi: 10.1086/520777.CrossRefGoogle Scholar
  74. Walsh, D. M. (2010). Not a sure thing: Fitness, probability, and causation. Philosophy of Science, 77(2), 147–171. doi: 10.1086/651320.CrossRefGoogle Scholar
  75. Walsh, D. M., Lewens, T., & Ariew, A. (2002). The trials of life: Natural selection and random drift. Philosophy of Science, 69(3), 429–446. doi: 10.1086/342454.CrossRefGoogle Scholar
  76. Werndl, C. (2009). What are the new implications of chaos for unpredictability? British Journal for the Philosophy of Science, 60(1), 195–220. doi: 10.1093/bjps/axn053.CrossRefGoogle Scholar
  77. Wilson, J. (2007). Newtonian forces. British Journal for the Philosophy of Science, 58, 173–205. doi: 10.1093/bjps/axm004.CrossRefGoogle Scholar
  78. Wilson, J. M. (2009). The causal argument against component forces. Dialectica, 63(4), 525–554. doi: 10.1111/j.1746-8361.2009.01216.x.CrossRefGoogle Scholar
  79. Woodward, J., & Hitchcock, C. (2003). Explanatory generalizations, part I: A counterfactual account. Noûs, 37(1), 1–24. doi: 10.1111/1468-0068.00426.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Philosophy and Religious StudiesLouisiana State UniversityBaton RougeUSA

Personalised recommendations