Advertisement

Synthese

, Volume 193, Issue 10, pp 3209–3238 | Cite as

Discovery without a ‘logic’ would be a miracle

  • Benjamin C. Jantzen
Article

Abstract

Scientists routinely solve the problem of supplementing one’s store of variables with new theoretical posits that can explain the previously inexplicable. The banality of success at this task obscures a remarkable fact. Generating hypotheses that contain novel variables and accurately project over a limited amount of additional data is so difficult—the space of possibilities so vast—that succeeding through guesswork is overwhelmingly unlikely despite a very large number of attempts. And yet scientists do generate hypotheses of this sort in very few tries. I argue that this poses a dilemma: either the long history of scientific success is a miracle, or there exists at least one method or algorithm for generating novel hypotheses with at least limited projectibility on the basis of what’s available to the scientist at a time, namely a set of observations, the history of past conjectures, and some prior theoretical commitments. In other words, either ordinary scientific success is miraculous or there exists a logic of discovery at the heart of actual scientific method.

Keywords

Logic of discovery Scientific discovery Confirmation Induction Machine learning 

Notes

Acknowledgments

I am grateful to Richard Burian, Lydia Patton, Tristram McPherson, Kelly Trogdon, Ted Parent, Gregory Novak, Daniel Kraemer, Nathan Rockford, Nathan Adams, and two anonymous reviewers for their insightful criticisms of earlier versions of this paper.

References

  1. Battle, A., Jonikas, M. C., Walter, P., Weissman, J. S., & Koller, D. (2010). Automated identification of pathways from quantitative genetic interaction data. Molecular Systems Biology, 6(1), 1–13. doi: 10.1038/msb.2010.27.
  2. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127. doi: 10.1561/2200000006.CrossRefGoogle Scholar
  3. Bishop, C. (2007). Pattern recognition and machine learning. New York: Springer.Google Scholar
  4. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees (1st ed.). Boca Raton: Chapman and Hall/CRC.Google Scholar
  5. Carmichael, R.D. (1922). The Logic of Discovery. The Monist, 32(4), 569–608. http://www.jstor.org/stable/27900927.
  6. Caschera, F., Gazzola, G., Bedau, M. A., Bosch Moreno, C., Buchanan, A., Cawse, J., et al. (2010). Automated discovery of novel drug formulations using predictive iterated high throughput experimentation. PLoS One, 5(1), e8546. doi: 10.1371/journal.pone.0008546.CrossRefGoogle Scholar
  7. Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University Of Chicago Press.CrossRefGoogle Scholar
  8. Curd, M. V. (1980). The logic of discovery: An analysis of three approaches. In R. S. Cohen, M. W. Wartofsky, & T. Nickles (Eds.), Scientific discovery, logic, and rationality, Boston Studies in the Philosophy of Science D (Vol. 56, pp. 201–219). Dordrecht, Holland: Reidel Publishing Company.CrossRefGoogle Scholar
  9. Darden, L. (2002). Strategies for discovering mechanisms: Schema instantiation, modular subassembly, forward/backward chaining. Philosophy of Science, 69(S3), S354–S365. doi: 10.1086/341858.CrossRefGoogle Scholar
  10. Darnell, S. J., Page, D., & Mitchell, J. C. (2007). An automated decision-tree approach to predicting protein interaction hot spots. Proteins: Structure, Function, and Bioinformatics, 68(4), 813–823. doi: 10.1002/prot.21474.CrossRefGoogle Scholar
  11. Ebert-Uphoff, I., & Deng, Y. (2012). Causal discovery for climate research using graphical models. Journal of Climate, 25(17), 5648–5665. http://search.proquest.com/docview/1039516026.
  12. Feferman, S. (1995). Penrose’s Gödelian argument. Psyche, 2, 21–32.Google Scholar
  13. Feigenbaum, E. A., & Buchanan, B. G. (1993). DENDRAL and Meta-DENDRAL: roots of knowledge systems and expert system applications. Artificial Intelligence, 59(12), 233–240. doi: 10.1016/0004-3702(93)90191-D, http://www.sciencedirect.com/science/article/pii/000437029390191D.
  14. Flach, P. (2012). Machine learning: The art and science of algorithms that make sense of data. Cambridge: Cambridge University Press, http://proquest.safaribooksonline.com/9781107096394.
  15. van Fraassen, B. C. (1990). Laws and symmetry. Oxford, NY: Oxford University Press.Google Scholar
  16. Freno, A. (2009). Statistical machine learning and the logic of scientific discovery. Iris: European Journal of Philosophy & Public Debate, 1(2), 375–388. http://ezproxy.lib.vt.edu:8080/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=hlh&AN=47365071&scope=site
  17. Gillies, D. (1996). Artificial intelligence and scientific method. Oxford, NY: Oxford University Press.Google Scholar
  18. Gutting, G. (1980). Science as discovery. Revue Internationale de Philosophie, 131, 26–48.Google Scholar
  19. Han, L. Y., Zheng, C. J., Xie, B., Jia, J., Ma, X. H. & Zhu, F. (2007). Support vector machines approach for predicting druggable proteins: Recent progress in its exploration and investigation of its usefulness. Drug Discovery Today, 12(78), 304–313. doi: 10.1016/j.drudis.2007.02.015, http://www.sciencedirect.com/science/article/pii/S1359644607000967.
  20. Hanson, N. R. (1961). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press.Google Scholar
  21. Hempel, C. G. (1966). Philosophy of natural science. Prentice-Hall foundations of philosophy series. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  22. Hoyningen-Huene, P. (2006). Context of discovery versus context of justification and Thomas Kuhn. In Schickore J, Friedrich S. (Eds.), Revisiting discovery and justification, no. 14 in Archimedes (pp. 119–131). Dordrecht: Springer. http://link.springer.com.ezproxy.lib.vt.edu/chapter/10.1007/1-4020-4251-5_8.
  23. Kelly, K. T. (1987). The logic of discovery. Philosophy of Science, 54(3), 435–452. http://www.jstor.org/stable/187583
  24. Kenny, L. C., Dunn, W. B., Ellis, D. I., Myers, J., Baker, P. N., & Kell, D. B. (2005). Novel biomarkers for pre-eclampsia detected using metabolomics and machine learning. Metabolomics, 1(3), 227–234. doi: 10.1007/s11306-005-0003-1.CrossRefGoogle Scholar
  25. King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K., Bryant, C. H. & Muggleton, S. H. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427(6971), 247–252. doi: 10.1038/nature02236, http://www.nature.com/nature/journal/v427/n6971/full/nature02236.html
  26. Kleiner, S. A. (1993). The logic of discovery: A theory of the rationality of scientific research. Dordrecht, Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  27. Langley, P., & Zytkow, J. M. (1989). Data-driven approaches to empirical discovery. Artificial Intelligence, 40, 283–312, doi: 10.1016/0004-3702(89)90051-9, http://www.sciencedirect.com/science/article/pii/0004370289900519, 13.
  28. Langley, P., Simon, H. A., Bradshaw, G., & Zytkow, J. M. (1987). Scientific discovery: Computational explorations of the creative processes. Cambridge, Mass: MIT Press.Google Scholar
  29. Laudan, L. (1980). Why was the logic of discovery abandoned? In T. Nickles (Ed.), Scientific discovery, logic, and rationality, Boston Studies in the Philosophy of Science (Vol. 56, pp. 173–183). Dordrecht, Holland: D. Reidel Publishing Company.CrossRefGoogle Scholar
  30. Laudan, L. (1981). Science and hypothesis. Dordrecht, Holland: D. Reidel Publishing Company.CrossRefGoogle Scholar
  31. Maron, M. E., & Kuhns, J. L. (1960). On relevance, probabilistic Indexing and Information Retrieval. Journal of the ACM, 7(3), 216–244. doi: 10.1145/321033.321035.CrossRefGoogle Scholar
  32. McLaughlin, R. (1982). Invention and Induction: Laudan, Simon and the logic of discovery. Philosophy of Science, 49, 198–211. doi: 10.2307/186918, http://www.jstor.org/stable/186918, 2.
  33. Medina, F., Aguila, S., Baratto, M. C., Martorana, A., Basosi, R., Alderete, J. B., & Vazquez-Duhalt, R. (2013). Prediction model based on decision tree analysis for laccase mediators. Enzyme and Microbial Technology, 52(1), 68–76. doi: 10.1016/j.enzmictec.2012.10.009, http://www.sciencedirect.com/science/article/pii/S0141022912001779
  34. Michalski, R., & Chilausky, R. (1980). Knowledge acquisition by encoding expert rules versus computer induction from examples: A case study involving soybean pathology. International Journal of Man-Machine Studies, 12(1), 63–87. doi: 10.1016/S0020-7373(80)80054-X, http://www.sciencedirect.com/science/article/pii/S002073738080054X.
  35. Mjolsness, E., & DeCoste, D. (2001). Machine learning for science: State of the art and future prospects. Science, 293(5537), 2051–2055. doi: 10.1126/science.293.5537.2051, http://www.sciencemag.org/content/293/5537/2051.
  36. Nickles, T. (1984). Positive science and discoverability. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:13–27, http://www.jstor.org/stable/192324.
  37. Nickles, T. (1985). Beyond divorce: Current status of the discovery debate. Philosophy of Science, 52(2), 177–206. http://www.jstor.org/stable/187506.
  38. Nickles, T. (1990). Discovery logics. Philosophica, 45, 7–32.Google Scholar
  39. Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University Press.Google Scholar
  40. Penrose, R. (1994). Shadows of the mind: A search for the missing science of consciousness. Oxford, New York: Oxford University Press.Google Scholar
  41. Popper, K. (1972). Objective knowledge. London: Oxford University Press.Google Scholar
  42. Popper, K. (2002). The logic of scientific discovery. Routledge classics. New York: Routledge.Google Scholar
  43. Quinlan, J. R. (1992). C4.5: Programs for machine learning (1st ed.). San Mateo, CA: Morgan Kaufmann.Google Scholar
  44. Reichenbach, H. (1938). Experience and prediction: An analysis of the foundations and the structure of knowledge. Chicago: University of Chicago Press.Google Scholar
  45. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  46. Savary, C. (1995). Discovery and its logic: Popper and the “friends of discovery”. Philosophy of the Social Sciences, 25(3), 318–344. doi: 10.1177/004839319502500303, http://pos.sagepub.com/content/25/3/318.
  47. Schickore, J. (2014). Scientific discovery. In: Zalta E. N. (Eds.), The Stanford Encyclopedia of Philosophy (Spring 2014 ed.). http://plato.stanford.edu/archives/spr2014/entries/scientific-discovery/.
  48. Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324(5923), 81–85. doi: 10.1126/science.1165893, http://www.sciencemag.org/content/324/5923/81.
  49. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. http://www.jstor.org/stable/2958889.
  50. Shah, M. (2008). The logics of discovery in Popper’s evolutionary epistemology. Journal for General Philosophy of Science / Zeitschrift für allgemeine Wissenschaftstheorie, 39(2), 303–319. http://www.jstor.org/stable/40390659.
  51. Simon, H. A., Langley, P. W., & Bradshaw, G. L. (1981). Scientific discovery as problem solving. Synthese, 47, 1–27. doi: 10.2307/20115615, http://www.jstor.org/stable/20115615, 1
  52. Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search, adaptive computation and machine learning (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
  53. Thagard, P. (1980). Against evolutionary epistemology. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1980:187–196. http://www.jstor.org/stable/192564.
  54. Tschaepe, M. (2014). Guessing and abduction. Transactions of the Charles S Peirce Society: A Quarterly Journal in American Philosophy, 50(1), 115–138. https://muse-jhu-edu.ezproxy.lib.vt.edu/journals/transactions_of_the_charles_s_peirce_society/v050/50.1.tschaepe.html
  55. Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. doi: 10.1128/AEM.00062-07, http://aem.asm.org/content/73/16/5261.
  56. Way, M., Scargle, J., Ali, K., & Srivastava, A. (2012). Advances in machine learning and data mining for astronomy. New York: Chapman and Hall/CRC. http://proquest.safaribooksonline.com/9781439841747.
  57. Woodward, J. F. (1992). Logic of discovery or psychology of invention? Foundations of Physics, 22(2), 187–203. doi: 10.1007/BF01893611.CrossRefGoogle Scholar
  58. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., et al. (2007). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37. doi: 10.1007/s10115-007-0114-2.CrossRefGoogle Scholar
  59. Yang, Z.R. (2004). Biological applications of support vector machines. Briefings in Bioinformatics, 5(4), 328–338. doi: 10.1093/bib/5.4.328, http://bib.oxfordjournals.org/content/5/4/328.
  60. Zhang, N. L., Nielsen, T. D., & Jensen, F. V. (2004). Latent variable discovery in classification models. Artificial Intelligence in Medicine, 30(3), 283–299. doi: 10.1016/j.artmed.2003.11.004, http://www.sciencedirect.com/science/article/pii/S0933365703001350.
  61. Zytkow, J. M., & Simon, H. A. (1988). Normative systems of discovery and logic of search. Synthese, 74, 65–90. doi: 10.2307/20116486, http://www.jstor.org/stable/20116486, 1.

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Philosophy DepartmentBlacksburgUSA

Personalised recommendations