Synthese

, Volume 193, Issue 8, pp 2389–2425 | Cite as

Fiber bundles, Yang–Mills theory, and general relativity

Article

Abstract

I articulate and discuss a geometrical interpretation of Yang–Mills theory. Analogies and disanalogies between Yang–Mills theory and general relativity are also considered.

Keywords

Yang–Mills theory General relativity Fiber bundle interpretation Holonomy interpretation 

References

  1. Anandan, J. (1993). Remarks concerning the geometries of gravity and gauge fields. In B. L. Hu, M. P. Ryan, & C. V. Vishveshwara (Eds.), Directions in general relativity (pp. 10–20). New York: Cambridge University Press.CrossRefGoogle Scholar
  2. Arntzenius, F. (2012). Space, time, and stuff. New York: Oxford University Press.CrossRefGoogle Scholar
  3. Baez, J., & Munian, J. (1994). Gauge fields, knots and gravity. River Edge, NJ: World Scientific.CrossRefGoogle Scholar
  4. Barrett, T. (2014). On the structure of classical mechanics. The British Journal of Philosophy of Science. doi:10.1093/bjps/axu005.
  5. Belot, G. (1998). Understanding electromagnetism. The British Journal for Philosophy of Science, 49(4), 531–555.CrossRefGoogle Scholar
  6. Belot, G. (2003). Symmetry and gauge freedom. Studies in History and Philosophy of Modern Physics, 34(2), 189–225.CrossRefGoogle Scholar
  7. Belot, G. (2007). The representation of time and change in mechanics. In J. Butterfield & J. Earman (Eds.), Philosophy of physics (pp. 133–228). Amsterdam: Elsevier.CrossRefGoogle Scholar
  8. Bleecker, D. (1981). Gauge theory and variational principles. Reading, MA: Addison-Wesley. (Reprinted by Dover Publications in 2005).Google Scholar
  9. Brown, H. (2005). Physical relativity. New York: Oxford University Press.CrossRefGoogle Scholar
  10. Butterfield, J. (2007). On symplectic reduction in classical mechanics. In J. Butterfield & J. Earman (Eds.), Philosophy of physics (pp. 1–132). Amsterdam: Elsevier.CrossRefGoogle Scholar
  11. Catren, G. (2008). Geometrical foundation of classical Yang-Mills theory. Studies in History and Philosophy of Modern Physics, 39(3), 511–531.CrossRefGoogle Scholar
  12. Curiel, E. (2013). Classical mechanics is Lagrangian; it is not Hamiltonian. The British Journal for Philosophy of Science, 65(2), 269–321.CrossRefGoogle Scholar
  13. Earman, J. (1995). Bangs, crunches, whimpers, and shrieks. New York: Oxford University Press.Google Scholar
  14. Feintzeig, B., & Weatherall, J. O. (2014). The geometry of the ‘gauge argument’, unpublished manuscript.Google Scholar
  15. Friedman, M. (1983). Foundations of space-time theories. Princeton, NJ: Princeton University Press.Google Scholar
  16. Geroch, R. (1996). Partial differential equations of physics. In G. S. Hall & J. R. Pulham (Eds.), General relativity: Proceedings of the forty sixth Scottish Universities summer school in physics (pp. 19–60). Edinburgh: SUSSP Publications.Google Scholar
  17. Healey, R. (2001). On the reality of gauge potentials. Philosophy of Science, 68(4), 432–455.CrossRefGoogle Scholar
  18. Healey, R. (2004). Gauge theories and holisms. Studies in History and Philosophy of Modern Physics, 35(4), 643–666.CrossRefGoogle Scholar
  19. Healey, R. (2007). Gauging what’s real: The conceptual foundations of contemporary gauge theories. New York: Oxford University Press.CrossRefGoogle Scholar
  20. Kobayashi, S., & Nomizu, K. (1963). Foundations of differential geometry (Vol. 1). New York: Interscience Publishers.Google Scholar
  21. Kolář, I., Michor, P. W., & Slovák, J. (1993). Natural operations in differential geometry. New York: Springer.CrossRefGoogle Scholar
  22. Lee, J. M. (2009). Manifolds and differential geometry. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  23. Leeds, S. (1999). Gauges: Aharanov, Bohm, Yang, Healey. Philosophy of Science, 66(4), 606–627.CrossRefGoogle Scholar
  24. Lyre, H. (2004). Holism and structuralism in \(U(1)\) gauge theory. Studies in History and Philosophy of Modern Physics, 35(4), 643–670.CrossRefGoogle Scholar
  25. Malament, D. (2012). Topics in the foundations of general relativity and Newtonian gravitation theory. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  26. Maudlin, T. (2007). The metaphysics within physics (pp. 78–103, Ch. 3). New York: Oxford University Press.Google Scholar
  27. Michor, P. (2009). Topics in differential geometry. Providence, RI: American Mathematical Society.Google Scholar
  28. Myrvold, W. C. (2011). Nonseparability, classical, and quantum. The British Journal for the Philosophy of Science, 62(2), 417–432.CrossRefGoogle Scholar
  29. Nakahara, M. (1990). Geometry topology and physics. Philadelphia: Institute of Physics Publishing.CrossRefGoogle Scholar
  30. North, J. (2009). The ‘structure’ of physics: A case study. Journal of Philosophy, 106(2), 57–88.CrossRefGoogle Scholar
  31. Palais, R. S. (1981). The geometrization of physics. Institute of Mathematics, National Tsing Hua University, Hsinchu, Taiwan, accessed from http://vmm.math.uci.edu/.
  32. Penrose, R., & Rindler, W. (1984). Spinors and space-time. New York: Cambridge University Press.CrossRefGoogle Scholar
  33. Rosenstock, S., & Weatherall, J. O. (2015a). A categorical equivalence between generalized holonomy maps on a connected manifold and principal connections on bundles over that manifold. arXiv:1504.02401 [math-ph].
  34. Rosenstock, S., & Weatherall, J. O. (2015b). On holonomy and fiber bundle interpretations of Yang–Mills theory, unpublished manuscript.Google Scholar
  35. Swanson, N., & Halvorson, H. (2012). On North’s ‘the structure of physics’. http://philsci-archive.pitt.edu/9314/.
  36. Taubes, C. H. (2011). Differential geometry: Bundles, connections, metrics and curvature. New York: Oxford University Press.CrossRefGoogle Scholar
  37. Trautman, A. (1965). Foundations and current problem of general relativity. In S. Deser & K. W. Ford (Eds.), Lectures on general relativity (pp. 1–248). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  38. Trautman, A. (1980). Fiber bundles, gauge fields, and gravitation. In A. Held (Ed.), General relativity and gravitation (pp. 287–308). New York: Plenum Press.Google Scholar
  39. Wald, R. (1984). General relativity. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  40. Weatherall, J. O. (2015). Regarding the ‘Hole Argument’. The British Journal for Philosophy of Science (Forthcoming). arXiv:1412.0303.
  41. Wu, T. T., & Yang, C. N. (1975). Concept of nonintegrable phase factors and global formulation of gauge fields. Physical Review D, 12(12), 3845–3857.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations