, Volume 193, Issue 7, pp 1983–2012 | Cite as

What is Shannon information?

  • Olimpia LombardiEmail author
  • Federico Holik
  • Leonardo Vanni


Despite of its formal precision and its great many applications, Shannon’s theory still offers an active terrain of debate when the interpretation of its main concepts is the task at issue. In this article we try to analyze certain points that still remain obscure or matter of discussion, and whose elucidation contribute to the assessment of the different interpretative proposals about the concept of information. In particular, we argue for a pluralist position, according to which the different views about information are no longer rival, but different interpretations of a single formal concept.


Shannon entropy Coding theorem Bit Epistemic interpretation Physical interpretation 



We are grateful to the participants of the workshop What is quantum information?, Jeffrey Bub, Adán Cabello, Dennis Dieks, Armond Duwell, Christopher Fuchs, Robert Spekkens and Christopher Timpson, (Buenos Aires, May of 2015) for the stimulating and lively discussions about the concept of information. We are also grateful to the anonymous referees, who devoted considerable effort to discuss the previous version of this article. We also want to thank María José Ferreira Ruiz for her support regarding the question of information in biology. This paper was partially supported by a Large Grant of the Foundational Questions Institute (FQXi), and by a Grant of the National Council of Scientific and Technological Research (CONICET) of Argentina.


  1. Adriaans, P. (2013). Information. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Fall 2013 Edition.
  2. Adriaans, P., & van Benthem, J. (Eds.). (2008). Handbook of philosophy of information. Amsterdam: Elsevier Science Publishers.Google Scholar
  3. Bar-Hillel, Y. (1964). Language and information: Selected essays on their theory and application. Reading, MA: Addison-Wesley.Google Scholar
  4. Bar-Hillel, Y., & Carnap, R. (1953). Semantic information. The British Journal for the Philosophy of Science, 4, 147–157.CrossRefGoogle Scholar
  5. Barwise, J., & Seligman, J. (1997). Information flow. The logic of distributed systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Bell, D. (1957). Information theory and its engineering applications. London: Pitman and Sons.Google Scholar
  7. Bergstrom, C., & Lachmann, M. (2004). Shannon information and biological fitness. In Proceedings of the IEEE Information Theory Workshop (pp. 50–54). New Jersey.Google Scholar
  8. Bergstrom, C., & Rosvall, M. (2011). The transmission sense of information. Biology and Philosophy, 26, 159–176.CrossRefGoogle Scholar
  9. Brown, H. (1987). Observation and objectivity. Oxford: Oxford University Press.Google Scholar
  10. Brukner, Č., & Zeilinger, A. (2001). Conceptual inadequacy of the Shannon information in quantum measurements. Physical Review A: Atomic, Molecular and Optical Physics, 63, #022113.CrossRefGoogle Scholar
  11. Brukner, Č., & Zeilinger, A. (2009). Information invariance and quantum probabilities. Foundations of Physics, 39, 677–689.CrossRefGoogle Scholar
  12. Bub, J. (2007). Quantum information and computation. In J. Butterfield & J. Earman (Eds.), Philosophy of Physics (pp. 555–660). Elsevier: Amsterdam.CrossRefGoogle Scholar
  13. Castañeda, H.-N. (1984). Causes, causity, and energy. In P. French, T. Uehling Jr, & H. Wettstein (Eds.), Midwest studies in philosophy IX (pp. 17–27). Minneapolis, MN: University of Minnesota Press.Google Scholar
  14. Caves, C. M., & Fuchs, C. A. (1996). Quantum information: How much information in a state vector? In A. Mann & M. Revzen (Eds.), The dilemma of Einstein, Podolsky and Rosen—60 Years later. Annals of the Israel Physical Society, 12, 226–257 (see also quant-ph/9601025).
  15. Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Unknown quantum states: The quantum de Finetti representation. Journal of Mathematical Physics, 43, 4537–4559.CrossRefGoogle Scholar
  16. Chaitin, G. (1966). On the length of programs for computing binary sequences. Journal of the Association for Computing Machinery, 13, 547–569.CrossRefGoogle Scholar
  17. Cover, T., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRefGoogle Scholar
  18. Deutsch, D., & Hayden, P. (2000). Information flow in entangled quantum systems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 456, 1759–1774.CrossRefGoogle Scholar
  19. Dowe, P. (1992). Wesley Salmon’s process theory of causality and the conserved quantity theory. Philosophy of Science, 59, 195–216.CrossRefGoogle Scholar
  20. Dretske, F. (1981). Knowledge & the flow of information. Cambridge, MA: MIT Press.Google Scholar
  21. Dunn, J. M. (2001). The concept of information and the development of modern logic. In W. Stelzner (Ed.), Non-classical approaches in the transition from traditional to modern logic (pp. 423–427). Berlin: de Gruyter.Google Scholar
  22. Duwell, A. (2003). Quantum information does not exist. Studies in History and Philosophy of Modern Physics, 34, 479–499.CrossRefGoogle Scholar
  23. Duwell, A. (2008). Quantum information does exist. Studies in History and Philosophy of Modern Physics, 39, 195–216.CrossRefGoogle Scholar
  24. Ehring, D. (1986). The transference theory of causality. Synthese, 67, 249–258.CrossRefGoogle Scholar
  25. Fabris, F. (2009). Shannon information theory and molecular biology. Journal of Interdisciplinary Mathematics, 12, 41–87.CrossRefGoogle Scholar
  26. Fair, D. (1979). Causation and the flow of energy. Erkenntnis, 14, 219–250.CrossRefGoogle Scholar
  27. Fisher, R. (1925). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700–725.CrossRefGoogle Scholar
  28. Floridi, L. (2010). Information—A very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  30. Floridi, L. (2013). Semantic conceptions of information. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2013 Edition.
  31. Frigg, R. (2008). A field guide to recent work on the foundations of statistical mechanics. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics (pp. 99–196). London: Ashgate.Google Scholar
  32. Glander, T. (2000). Origins of mass communications research during the American Cold War: Educational effects and contemporary implications. New Jersey: Lawrence Erlbaum.Google Scholar
  33. Hartley, R. (1928). Transmission of information. Bell System Technical Journal, 7, 535–563.CrossRefGoogle Scholar
  34. Hoel, E., Albantakis, L., & Tononi, G. (2013). Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences of USA, 110, 19790–19795.CrossRefGoogle Scholar
  35. Jammer, M. (1974). The philosophy of quantum mechanics. New York: Wiley.Google Scholar
  36. Jozsa, R. (1998). Entanglement and quantum computation. In S. Huggett, L. Mason, K. P. Tod, S. T. Tsou, & N. M. J. Woodhouse (Eds.), The geometric universe (pp. 369–379). Oxford: Oxford University Press.Google Scholar
  37. Jozsa, R. (2004). Illustrating the concept of quantum information. IBM Journal of Research and Development, 4, 79–85.CrossRefGoogle Scholar
  38. Kahn, D. (1967). The codebreakers—The story of secret writing. New York: Macmillan.Google Scholar
  39. Kay, L. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.Google Scholar
  40. Khinchin, A. (1957). Mathematical foundations of information theory. New York: Dover.Google Scholar
  41. Kim, Y.-S., Lee, J.-C., Kwon, O., & Kim, Y.-H. (2012). Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Physics, 8, 117–120.CrossRefGoogle Scholar
  42. Kistler, M. (1998). Reducing causality to transmission. Erkenntnis, 48, 1–24.CrossRefGoogle Scholar
  43. Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7.Google Scholar
  44. Kolmogorov, A. (1968). Logical basis for information theory and probability theory. Transactions on Information Theory, 14, 662–664.CrossRefGoogle Scholar
  45. Kolmogorov, A. (1983). Combinatorial foundations of information theory and the calculus of probabilities. Russian Mathematical Surveys, 38, 29–40.CrossRefGoogle Scholar
  46. Kosso, P. (1989). Observability and observation in physical science. Dordrecht: Kluwer.CrossRefGoogle Scholar
  47. Landauer, R. (1991). Information is physical. Physics Today, 44, 23–29.CrossRefGoogle Scholar
  48. Landauer, R. (1996). The physical nature of information. Physics Letters A, 217, 188–193.CrossRefGoogle Scholar
  49. Lean, O. (2013). Getting the most out of Shannon information. Biology and Philosophy, 29, 395–413.CrossRefGoogle Scholar
  50. Lombardi, O. (2004). What is information? Foundations of Science, 9, 105–134.CrossRefGoogle Scholar
  51. Lombardi, O. (2005). Dretske, Shannon’s theory and the interpretation of information. Synthese, 144, 23–39.CrossRefGoogle Scholar
  52. Lombardi, O., Fortin, S., & López, C. (2014a). Deflating the deflationary view of information. PhilSci-Archive, ID: 10910.Google Scholar
  53. Lombardi, O., Fortin, S., & Vanni, L. (2014b). A pluralist view about information. Philosophy of Science (forthcoming).Google Scholar
  54. Lombardi, O., Holik, F., & Vanni, L. (2014c). What is quantum information? PhilSci-Archive, ID: 11159.Google Scholar
  55. Lombardi, O., & Labarca, M. (2005). Los Enfoques de Boltzmann y Gibbs frente al Rroblema de la Irreversibilidad. Critica, 37, 39–81.Google Scholar
  56. MacKay, D. (1969). Information, mechanism and meaning. Cambridge, MA: MIT Press.Google Scholar
  57. Magurran, A. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.Google Scholar
  58. Menzies, P., & Price, H. (1993). Causation as a secondary quality. British Journal for the Philosophy of Science, 44, 187–203.CrossRefGoogle Scholar
  59. Nauta, D. (1972). The meaning of information. The Hague: Mouton.Google Scholar
  60. Penrose, R. (1998). Quantum computation, entanglement and state reduction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 356, 1927–1939.CrossRefGoogle Scholar
  61. Price, H. (1991). Agency and probabilistic causality. British Journal for the Philosophy of Science, 42, 157–176.CrossRefGoogle Scholar
  62. Reza, F. (1961). Introduction to information theory. New York: McGraw-Hill.Google Scholar
  63. Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678.CrossRefGoogle Scholar
  64. Russell, B. (1948). Human knowledge: Its scope and limits. New York: Simon and Schuster.Google Scholar
  65. Sarkar, S. (2005). How genes encode information for phenotypic traits. In S. Sarkar (Ed.), Molecular models of life. Philosophical papers on molecular biology (pp. 261–283). Cambridge, MA: The MIT Press.Google Scholar
  66. Schumacher, B. (1995). Quantum coding. Physical Review A: Atomic, Molecular and Optical Physics, 51, 2738–2747.CrossRefGoogle Scholar
  67. Shannon, C. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
  68. Shannon, C. (1993). In N. Sloane & A. Wyner (Eds.), Collected papers. New York: IEEE Press.Google Scholar
  69. Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. Chicago: University of Illinois Press.Google Scholar
  70. Shapere, D. (1982). The concept of observation in science and philosophy. Philosophy of Science, 49, 485–525.CrossRefGoogle Scholar
  71. Solomonoff, R. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254.CrossRefGoogle Scholar
  72. Stonier, T. (1990). Information and the internal structure of the universe: An exploration into information physics. New York: Springer.CrossRefGoogle Scholar
  73. Stonier, T. (1996). Information as a basic property of the universe. Biosystems, 38, 135–140.CrossRefGoogle Scholar
  74. Timpson, C. (2003). On a supposed conceptual inadequacy of the Shannon information in quantum mechanics. Studies in History and Philosophy of Modern Physics, 34, 441–468.CrossRefGoogle Scholar
  75. Timpson, C. (2004). Quantum information theory and the foundations of quantum mechanics. PhD Dissertation, University of Oxford (quant-ph/0412063).Google Scholar
  76. Timpson, C. (2006). The grammar of teleportation. The British Journal for the Philosophy of Science, 57, 587–621.CrossRefGoogle Scholar
  77. Timpson, C. (2008). Philosophical aspects of quantum information theory. In D. Rickles (Ed.), The Ashgate companion to the new philosophy of physics (pp. 197–261). Aldershot: Ashgate Publishing (page numbers are taken from the online version). arXiv:quant-ph/0611187.
  78. Timpson, C. (2013). Quantum information theory and the foundations of quantum mechanics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  79. Tribus, M., & McIrving, E. C. (1971). Energy and information. Scientific American, 225, 179–188.CrossRefGoogle Scholar
  80. Wetzel, L. (2011). Types and tokens. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2011 Edition.
  81. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  82. Woodward, J. (2013). Causation and manipulability.’ In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy, Spring 2011 Edition.
  83. Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29, 631–643.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Olimpia Lombardi
    • 1
    Email author
  • Federico Holik
    • 2
  • Leonardo Vanni
    • 3
  1. 1.CONICETUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICETUniversidad Nacional de la PlataBuenos AiresArgentina
  3. 3.Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations