, Volume 193, Issue 6, pp 1833–1873 | Cite as

A normative framework for argument quality: argumentation schemes with a Bayesian foundation

  • Ulrike Hahn
  • Jos Hornikx


In this paper, it is argued that the most fruitful approach to developing normative models of argument quality is one that combines the argumentation scheme approach with Bayesian argumentation. Three sample argumentation schemes from the literature are discussed: the argument from sign, the argument from expert opinion, and the appeal to popular opinion. Limitations of the scheme-based treatment of these argument forms are identified and it is shown how a Bayesian perspective may help to overcome these. At the same time, the contributions of the standard scheme-based approach are highlighted, and it is argued that only a combination of the insights of different traditions will yield a complete normative theory of argument quality.


Argumentation Rationality Testimony Evidence Inference 



We would like to thank Frank Zenker for helpful comments on a draft of this manuscript, and Tom Gordon for helpful discussion.The first author was partially supported by the Swedish Research Council’s Hesselgren professorship, and the second author was partially supported by the Centre for Language Studies (Nijmegen).

Compliance with Ethical Standards

Conflict of interest

There are no potential conflicts of interest associated with this research.


  1. Alexy, R. (1989). A theory of legal argumentation. Oxford: Clarendon Press.Google Scholar
  2. Atkinson, D., & Peijnenburg, J. (2010). Justification by infinite loops. Notre Dame Journal of Formal Logic, 51, 407–416.CrossRefGoogle Scholar
  3. Bex, F., Prakken, H., Reed, C., & Walton, D. (2003). Towards a formal account of reasoning about evidence: Argumentation schemes and generalisations. Artificial Intelligence and Law, 11, 125–165.CrossRefGoogle Scholar
  4. Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.Google Scholar
  5. Bolstad, W. M. (2004). Introduction to Bayesian statistics. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  6. Bovens, L., & Hartmann, S. (2003). Bayesian epistemology. Oxford: Oxford University Press.Google Scholar
  7. Bovens, L., & Olsson, E. J. (2002). Believing more, risking less: On coherence, truth and non-trivial extensions. Erkenntnis, 57, 137–150.CrossRefGoogle Scholar
  8. Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences, 10, 287–291.CrossRefGoogle Scholar
  9. Christmann, U., Mischo, C., & Flender, J. (2000a). Argumentational integrity: A training program for dealing with unfair argumentational contributions. Argumentation, 14, 339–360.CrossRefGoogle Scholar
  10. Christmann, U., Mischo, C., & Groeben, N. (2000b). Components of the evaluation of integrity violations in argumentative discussions: Relevant factors and their relationships. Journal of Language and Social Psychology, 19, 315–341.CrossRefGoogle Scholar
  11. Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5, 559–583.CrossRefGoogle Scholar
  12. Corner, A., & Hahn, U. (2009). Evaluating science arguments: Evidence, uncertainty, uncertainty, and argument strength. Journal of Experimental Psychology: Applied, 15, 199–212.Google Scholar
  13. Corner, A., & Hahn, U. (2013). Normative theories of argumentation: Are some norms better than others? Synthese, 190, 3579–3610.CrossRefGoogle Scholar
  14. Corner, A., Hahn, U., & Oaksford, M. (2011). The psychological mechanism of the slippery slope argument. Journal of Memory and Language, 64, 153–170.CrossRefGoogle Scholar
  15. de Condorcet, N. C. (1785). Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix. Paris: Imprimerie Royale.Google Scholar
  16. Dennett, D. C. (1984). Cognitive wheels: The frame problem of AI. In C. Hookaway (Ed.), Minds, machines and evolution (pp. 129–151). Cambridge: Cambridge University Press.Google Scholar
  17. Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Belmont, CA: Thompson/ Wadsworth.Google Scholar
  18. Earman, J. (1992). Bayes or bust?. Cambridge, MA: MIT Press.Google Scholar
  19. Ehninger, D. (1974). Influence, belief, and argument: an introduction to responsible persuasion. Glenview, IL: Scott Foresman.Google Scholar
  20. Ehningner, D., & Brockriede, W. (1963). Decision by debate. New York: Dodd, Mead.Google Scholar
  21. Evans, J. St B T., & Over, D. E. (2004). If. Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Falk, R., & Well, A. D. (1997). Many faces of the correlation coefficient. Journal of Statistics Education, 5(3), 1–18.Google Scholar
  23. Fitelson, B. (1996). Wayne, Horwich and evidential diversity. Philosophy of Science, 63, 652–660.CrossRefGoogle Scholar
  24. Forsythe, R., Nelson, F., Neumann, G. R., & Wright, J. (1992). Anatomy of an experimental political stock market. The American Economic Review, 82, 1142–1161.Google Scholar
  25. Fox, J., & Das, S. (2000). Safe and sound. Menlo Park: AAAI Press.Google Scholar
  26. Freeman, J. B. (1995). The appeal to popularity and presumption by common knowledge. In H. V. Hansen & R. C. Pinto (Eds.), Fallacies: Classical and contemporary readings (pp. 263–273). University Park: University of Pennsylvania Press.Google Scholar
  27. Galton, F. (1907). Vox populi. Nature, 75, 450–451.CrossRefGoogle Scholar
  28. Garssen, B. J. (1997). Argumentatieschema’s in pragma-dialectisch perspectief: Een theoretisch en empirisch onderzoek. Amsterdam: IFOTT.Google Scholar
  29. Gigone, D., & Hastie, R. (1997). Proper analysis of the accuracy of group judgments. Psychological Bulletin, 121, 149–167.CrossRefGoogle Scholar
  30. Godden, D. M., & Walton, D. N. (2006). Argument from expert opinion as legal evidence: Critical questions and admissibility criteria of expert testimony in the American legal system. Ratio Juris, 19, 261–286.CrossRefGoogle Scholar
  31. Gordon, K. (1924). Group judgments in the field of lifted weights. Journal of Experimental Psychology, 7, 398–400.CrossRefGoogle Scholar
  32. Gordon, T. F., & Walton, D. (2009). Proof burdens and standards. In I. Rahwan & G. Simari (Eds.), Argumentation in artificial intelligence (pp. 239–260). Berlin: Springer.CrossRefGoogle Scholar
  33. Gordon, T., Prakken, H., & Walton, D. (2007). The Carneades model of argument and burden of proof. Artificial Intelligence, 171, 875–896.CrossRefGoogle Scholar
  34. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-physics. New York: Wiley.Google Scholar
  35. Grofman, B., Owen, G., & Feld, S. L. (1983). Thirteen theorems in search of the truth. Theory and Decision, 15, 261–278.CrossRefGoogle Scholar
  36. Hahn, U. (2011). The problem of circularity in evidence, argument and explanation. Perspectives on Psychological Science, 6, 172–182.CrossRefGoogle Scholar
  37. Hahn, U. (2014). The Bayesian boom: Good thing or bad? Frontiers in Cognitive Science, 5, Article 765.Google Scholar
  38. Hahn, U., Harris, A. J. L., & Corner, A. J. (2009). Argument content and argument source: An exploration. Informal Logic, 29, 337–367.Google Scholar
  39. Hahn, U., & Oaksford, M. (2006a). A Bayesian approach to informal argument fallacies. Synthese, 152, 207–236.CrossRefGoogle Scholar
  40. Hahn, U., & Oaksford, M. (2006b). Why a normative theory of argument strength and why might one want it to be Bayesian? Informal Logic, 26, 1–24.Google Scholar
  41. Hahn, U., & Oaksford, M. (2007a). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114, 704–732.CrossRefGoogle Scholar
  42. Hahn, U., & Oaksford, M. (2007b). The burden of proof and its role in argumentation. Argumentation, 21, 39–61.CrossRefGoogle Scholar
  43. Hahn, U., & Oaksford, M. (2012). Rational argument. In Holyoak & Morrison (Eds.), The Oxford handbook of thinking and reasoning. Oxford: Oxford university Press.Google Scholar
  44. Hahn, U., Oaksford, M. & Bayindir, H. (2005). How convinced should we be by negative evidence? In Proceedings of the 27th annual meeting of the cognitive science society.Google Scholar
  45. Hahn, U., Oaksford, M., & Harris, A. J. (2013). Testimony and argument: A Bayesian perspective. In F. Zenker (Ed.), Bayesian argumentation (pp. 15–28). Dordrecht: Springer.Google Scholar
  46. Hajek, A. (2008). Dutch book arguments. In P. Anand, P. Pattanaik, & C. Puppe (Eds.), The handbook of rational and social choice (pp. 173–196). Oxford: Oxford University Press.Google Scholar
  47. Hamblin, C. L. (1970). Fallacies. London: Methuen.Google Scholar
  48. Hardman, D. (2009). Judgment and decision making: Psychological perspectives. Chichester: BPS Blackwell.Google Scholar
  49. Harris, A. J. L., Corner, A., & Hahn, U. (2013). James is polite and punctual (and useless): A Bayesian formalisation of faint praise. Thinking & Reasoning, 19, 414–429.CrossRefGoogle Scholar
  50. Harris, A. J. L., Hahn, U., Hsu, A. S., & Madsen, J. K. (2015). The appeal to expert opinion: Quantitative support for a Bayesian network approach. Cognitive Science.Google Scholar
  51. Harris, A. J. L., Hsu, A. S., & Madsen, J. K. (2012). Because Hitler did it! Quantitative tests of Bayesian argumentation using ad hominem. Thinking and Reasoning, 18, 311–343.CrossRefGoogle Scholar
  52. Hastings, A. C. (1962). A reformulation of the modes of reasoning in argumentation. Unpublished dissertation, Northwestern University, Evanston, IL.Google Scholar
  53. Hoeken, H., Sorm, E., & Schellens, P. J. (2014). Arguing about the likelihood of consequences: Laypeople’s criteria to distinguish strong arguments from weak ones. Thinking and Reasoning, 20, 77–98.CrossRefGoogle Scholar
  54. Hoeken, H., Timmers, R., & Schellens, P. J. (2012). Arguing about desirable consequences: What constitutes a convincing argument? Thinking and Reasoning, 18, 394–416.CrossRefGoogle Scholar
  55. Hogarth, R. (1978). A note on aggregating opinions. Organizational Behavior and Human Performance, 21, 40–46.CrossRefGoogle Scholar
  56. Hornikx, J., & Hoeken, H. (2007). Cultural differences in the persuasiveness of evidence types and evidence quality. Communication Monographs, 74, 443–463.CrossRefGoogle Scholar
  57. Howson, C., & Urbach, P. (1993). Scientific reasoning: The Bayesian approach. La Salle, IL: Open Court.Google Scholar
  58. Inch, E. S., & Warnick, B. H. (2009). Critical thinking and communication: The use of reason in argument (6th ed.). Boston: Pearson.Google Scholar
  59. Joensson, M., Hahn, U. & Olsson, E. (2015). The kind of group you want to belong to: Effects of group structure on group accuracy. Cognition. Online first.Google Scholar
  60. Kadane, J. B., & Schum, D. A. (1996). A probabilistic analysis of the Sacco and Vanzetti evidence. Chichester: Wiley.Google Scholar
  61. Katzav, J., & Reed, C. A. (2004). On argumentation schemes and the natural classification of arguments. Argumentation, 18, 239–259.CrossRefGoogle Scholar
  62. Kienpointner, M. (1992). Alltagslogik: Struktur und Funktion von Argumentationsmustern. Stuttgart-Bad Cannstatt: Friedrich Frommann.Google Scholar
  63. Knill, D. C., & Richards, W. (Eds.). (1996). Perception as Bayesian inference. Cambridge: Cambridge University Press.Google Scholar
  64. Korb, K. (2004). Bayesian informal logic and fallacy. Informal Logic, 23, 41–70.Google Scholar
  65. Korb, K. B., & Nicholson, A. E. (2003). Bayesian artificial intelligence. Boca Raton: CRC Press.CrossRefGoogle Scholar
  66. Korb, K. B., McConachy, R. & Zukerman, I. (1997). A cognitive model of argumentation. In: Proceedings of the 19th annual conference of the cognitive science society (pp. 400–405).Google Scholar
  67. Ladha, K. K. (1992). The Condorcet jury theorem, free speech, and correlated votes. American Journal of Political Science, 36, 617–634.CrossRefGoogle Scholar
  68. Laplace, P. S. (1951). A philosophical essay on probabilities (F. W. Truscott & F. L. Emory, Trans.). New York: Dover Publications. (Original work published 1814).Google Scholar
  69. Leitgeb, H., & Pettigrew, R. (2010). An objective justification of Bayesianism II: The consequences of minimizing inaccuracy. Philosophy of Science, 77, 236–272.CrossRefGoogle Scholar
  70. Lewis, D. (1980). A subjectivist’s guide to objective chance. In Richard C. Jeffrey (Ed.), Studies in inductive logic and probability (Vol. II, pp. 263–293). Berkeley: University of California Press.Google Scholar
  71. Lorge, I., Fox, D., Davitz, J., & Brenner, M. (1958). A survey of studies contrasting the quality of group performance and individual performance, 1920–1957. Psychological Bulletin, 55, 337–372.CrossRefGoogle Scholar
  72. McConachy, R., & Zukerman, I. (1999). Towards a dialogue capability in a Bayesian argumentation system. ETAI 3—Electronic Transactions of Artificial Intelligence (Section D), 3, 89–124.Google Scholar
  73. McConachy, R., Korb, K. B., & Zukerman, I. (1998). Deciding what not to say: An attentional-probabilistic approach to argument presentation. In Proceedings of the 20th annual conference of the cognitive science society (pp. 669–674), Madison, Wisconsin.Google Scholar
  74. Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34, 57–74.CrossRefGoogle Scholar
  75. Myrvold, W. C. (1996). Bayesianism and diverse evidence: A reply to Andrew Wayne. Philosophy of Science, 63, 661–665.CrossRefGoogle Scholar
  76. Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46, 84–106.CrossRefGoogle Scholar
  77. Nussbaum, E. M., & Edwards, O. V. (2011). Critical questions and argument stratagems: A framework for enhancing and analyzing students’ reasoning practices. Journal of Learning Sciences, 20, 443–488.CrossRefGoogle Scholar
  78. O’Keefe, D. J. (2002). Persuasion: Theory and research (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  79. Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101, 608–631.CrossRefGoogle Scholar
  80. Oaksford, M., & Hahn, U. (2004). A Bayesian approach to the argument from ignorance. Canadian Journal of Experimental Psychology, 58, 75–85.CrossRefGoogle Scholar
  81. Oaksford, M., & Hahn, U. (2007). Induction, deduction and argument strength in human reasoning and argumentation. In A. Feeney, & E. Heit (Eds.), Inductive reasoning (pp. 269–301). Cambridge University Press.Google Scholar
  82. Olsson, E. J. (2002). What is the problem of coherence and truth? Journal of Philosophy, 94, 246–272.CrossRefGoogle Scholar
  83. Olsson, E. J., & Schubert, S. (2007). Reliability conducive measures of coherence. Synthese, 157, 297–308.CrossRefGoogle Scholar
  84. Olsson, E. J. (2005). Against coherence: Truth, probability, and justification. Oxford: Oxford University Press.CrossRefGoogle Scholar
  85. Page, S. E. (2005). The difference: How the power of diversity creates better groups, firms, schools, and societies. Princeton: Princeton University Press.Google Scholar
  86. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan Kaufman.Google Scholar
  87. Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  88. Petty, R. E., & Cacioppo, J. T. (1986). Communication and persuasion: Central and peripheral routes to attitude change. New York: Springer.CrossRefGoogle Scholar
  89. Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person. Cambridge: MIT Press.Google Scholar
  90. Prakken, H. (2005). AI & law, logic and argument schemes. Argumentation, 19, 303–320.CrossRefGoogle Scholar
  91. Prakken, H., & Vreeswijk, G. A. W. (2002). Logics for defeasible argumentation. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 4, pp. 219–318). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  92. Rahwan, I., & Simari, G. R. (Eds.). (2009). Argumentation in artificial intelligence. Dordrecht: Springer.Google Scholar
  93. Reed, C., & Rowe, G. (2004). Araucaria: Software for argument analysis, diagramming and representation. International Journal of Artificial Intelligence Tools, 13, 961–980.CrossRefGoogle Scholar
  94. Reinard, J. C. (1991). Foundations of argument: Effective communication for critical thinking. Dubuque, IA: William C. Brown.Google Scholar
  95. Rescher, N. (1976). Plausible reasoning. Assen: Van Gorcum.Google Scholar
  96. Rieke, R. D., & Sillars, M. O. (1984). Argumentation and the decision making process. New York: Harper Collins.Google Scholar
  97. Rosenkrantz, R. D. (1992). The justification of induction. Philosophy of Science, 59, 527–539.CrossRefGoogle Scholar
  98. Schellens, P. J. (1985). Redelijke argumenten: Een onderzoek naar normen voor kritische lezers. Dordrecht: Foris.Google Scholar
  99. Schum, D. A. (1994). The evidential foundations of probabilistic reasoning. Evanston, IL: Northwestern University Press.Google Scholar
  100. Snoeck Henkemans, A. F. (2000). State-of-the-art: The structure of argumentation. Argumentation, 14, 447–473.CrossRefGoogle Scholar
  101. Stroop, J. R. (1932). Is the judgment of the group better than that of the average member of the group? Journal of Experimental Psychology, 15, 550–562.CrossRefGoogle Scholar
  102. Surowiecki, J. (2004). The wisdom of crowds. New York, NY: W.W. Norton & Company Inc.Google Scholar
  103. Treynor, J. L. (1987). Market efficiency and the bean jar experiment. Financial Analysts Journal, 43, 50–53.CrossRefGoogle Scholar
  104. van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation. The pragma-dialectical approach. Cambridge: Cambridge University Press.Google Scholar
  105. Verheij, B. (2003a). Dialectical argumentation with argumentation schemes: Towards a methodology for the investigation of argumentation schemes. In F. H. van Eemeren, A. Blair, C. Willard, & F. Snoeck Henkemans (Eds.), Proceedings of the 5th conference of the international society for the study of argumentation (pp. 1033–1037). Amsterdam: Sic Sat.Google Scholar
  106. Verheij, B. (2003b). Deflog: On the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation, 13, 319–346.CrossRefGoogle Scholar
  107. Verheij, B. (2004). Dialectical argumentation with argumentation schemes: An approach to legal logic. Artificial intelligence and Law, 11, 167–195.CrossRefGoogle Scholar
  108. Walton, D. N. (1989). Informal logic. Cambridge: Cambridge University Press.Google Scholar
  109. Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, N.J.: Erlbaum.Google Scholar
  110. Walton, D. N. (1997). Appeal to expert opinion: Arguments from authority. University Park, PA: Penn State Press.Google Scholar
  111. Walton, D. N. (1998). The new dialectic: Conversational contexts of argument. Toronto: University of Toronto Press.Google Scholar
  112. Walton, D. N. (1999). Appeal to popular opinion. University Park, PA: Penn State Press.Google Scholar
  113. Walton, D. M. (2001). Abductive, presumptive, and plausible arguments. Informal Logic, 21, 141–169.Google Scholar
  114. Walton, D. N. (2004). Relevance in argumentation. Mahwah, NJ: Erlbaum.Google Scholar
  115. Walton, D. N. (2006). Fundamentals of critical argumentation. Cambridge: Cambridge University Press.Google Scholar
  116. Walton, D. N. (2008). Witness testimony evidence: Argumentation, artificial intelligence, and law. Cambridge: Cambridge University Press.Google Scholar
  117. Walton, D., & Gordon, T. F. (2005). Critical questions in computational models of legal argument. In P. E. Dunne, & T. Bench-Capon (Ed.), International workshop on argumentation in artificial intelligence and law (pp. 103–111). Nijmegen: Wolf Legal Publishers.Google Scholar
  118. Walton, D., & Gordon, T. F. (2014). How to formalize informal logic. In Mohammed, D., & Lewiński, M. (Eds.), Virtues of argumentation. In: Proceedings of the 10th international conference of the Ontario society for the study of argumentation (OSSA), 22–26 May 2013(pp. 1–13). Windsor, ON: OSSA.Google Scholar
  119. Walton, D., & Reed, C. (2002). Argumentation schemes and defeasible inferences. In Workshop on computational models of natural argument, 15th European conference on artificial intelligence (pp. 11–20).Google Scholar
  120. Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  121. Wayne, A. (1995). Bayesianism and diverse evidence. Philosophy of Science, 62, 111–121.CrossRefGoogle Scholar
  122. Whately, R. (1846). Elements of rhetoric: Comprising an analysis of the laws of moral evidence and of persuasion, with rules for argumentative composition and elocution/c by Richard Whately. B. Fellowes.Google Scholar
  123. Woods, J., Irvine, A., & Walton, D. N. (2004). Argument: Critical thinking, logic and the fallacies, Revised Edition. Toronto: Prentice Hall.Google Scholar
  124. Zukerman, I. (2009). Towards probabilistic argumentation. In I. Rahwan & G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 443–462). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Psychological Sciences, Birkbeck CollegeUniversity of LondonLondonUK
  2. 2.Department of Communication and Information SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations