, Volume 192, Issue 12, pp 3979–4008 | Cite as

An assessment of the foundational assumptions in high-resolution climate projections: the case of UKCP09

  • Roman FriggEmail author
  • Leonard A. Smith
  • David A. Stainforth


The United Kingdom Climate Impacts Programme’s UKCP09 project makes high-resolution projections of the climate out to 2100 by post-processing the outputs of a large-scale global climate model. The aim of this paper is to describe and analyse the methodology used and then urge some caution. Given the acknowledged systematic, shared errors of all current climate models, treating model outputs as decision-relevant projections can be significantly misleading. In extrapolatory situations, such as projections of future climate change, there is little reason to expect that post-processing of model outputs can correct for the consequences of such errors. This casts doubt on our ability, today, to make trustworthy probabilistic projections at high resolution out to the end of the century.


Climate change Prediction Projection Simulation Model Probability Reliability Emulation Systematic error Decision-making  Structural model error 



Work for this paper has been supported by the LSE’s Grantham Research Institute on Climate Change and the Environment and the Centre for Climate Change Economics and Policy funded by the Economics and Social Science Research Council and Munich Re. Frigg further acknowledges financial support from the AHRC-funded ‘Managing Severe Uncertainty’ Project and Grant FFI2012-37354 of the Spanish Ministry of Science and Innovation (MICINN). Smith would like to acknowledge continuing support from Pembroke College, Oxford, from the Blue-Green Cities Research Consortium funded by EPSRC (Grant EP/K013661/1), and from RDCEP via NSF grant No. 0951576. We would like to thank Wendy Parker, Erica Thompson, and Charlotte Werndl for comments on earlier drafts and/or helpful discussions.


  1. Allen, M. R., & Stainforth, D. A. (2002). Towards objective probabalistic climate forecasting. Nature, 419(6903), 228–228.CrossRefGoogle Scholar
  2. Beven, K. (2012). Causal models as multiple working hypotheses about environmental processes. Comptes Rendus Geoscience, 344, 77–88.CrossRefGoogle Scholar
  3. Bishop, C. H., & Abramowitz, G. (2013). Climate model ependence and the replicate earth paradigm. Climate Dynamics, 41, 885–900.CrossRefGoogle Scholar
  4. Daron, J. D., & Stainforth, D. A. (2013). On predicting climate under climate change. Environmental Research Letters, 8, 1–8.CrossRefGoogle Scholar
  5. Deser, C., Knutti, R., Solomon, S., & Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Climate Change, 2(November), 775–779.CrossRefGoogle Scholar
  6. Dessler, A. (2011). Introduction to modern climate change. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Du, H., & Smith, L. A. (2012). Parameter estimation through ignorance. Physical Review E, 86(1), 016213.CrossRefGoogle Scholar
  8. Frigg, R., Bradley, S., Du, H., & Smith, L. A. (2014). The adventures of Laplace’s demon and his apprentices. Philosophy of Science, 81(1), 31–59.CrossRefGoogle Scholar
  9. Jenkins, G., Murphy, J., Sexton, D., Lowe, J., & Jones, P. (2009). UK climate projections: briefing report, DEFRA. Met Office Hadley Centre, Exeter.Google Scholar
  10. Judd, K., & Smith, L. A. (2004). Indistinguishable states II: The imperfect model scenario. Physica D, 196, 224–242.Google Scholar
  11. Jun, M. Y., Knutti, R., & Nychka, D. W. (2008a). Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? Journal of the American Statistical Association, 103, 934–947.CrossRefGoogle Scholar
  12. Jun, M. Y., Knutti, R., & Nychka, D. W. (2008b). Local eigenvalue analysis of CMIP3 climate model errors. Tellus A: Dynamic Meteorology and Oceanography, 60, 992–1000.CrossRefGoogle Scholar
  13. Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464.CrossRefGoogle Scholar
  14. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G. A. (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23, 2739–2758.CrossRefGoogle Scholar
  15. Lorenz, E. (1968). Climate determinism. Meteorological Monographs, 8(30), 1–3.Google Scholar
  16. McWilliams, J. C. (2007). Irreducible imprecision in atmospheric and oceanic simulations. Proceedings of the National Aacdemy of Sciences, 104(21), 8709–8713.CrossRefGoogle Scholar
  17. Meehl, G. A., Goddard, L., Murphy, J., Stoufer, R. J., Boer, G., Danabasoglu, G., et al. (2009). Decadal prediction can it be skillful? Bulletin of the American Meteorological Society, 90, 1467–1485.CrossRefGoogle Scholar
  18. Murphy, J., Sexton, D., Jenkins, G., Boorman, P., Booth, B., Brown, K., et al. (2010). UK climate projections science report: Climate change projections. Version 3, updated December 2010. Met Office Hadley Centre, Exeter.
  19. Murphy, J. M., Booth, B. B. B., Collins, M., Harris, G. R., Sexton, D. M. H., & Webb, M. J. (2007). A methodology for probabilistic predictions of regional climate change for perturbed physics ensembles. Philosophical Transactions of the Royal Society A, 365, 1993–2028.CrossRefGoogle Scholar
  20. Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., et al. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430(12 Agust), 768–772.CrossRefGoogle Scholar
  21. Oreskes, N. (2007). The scientific consensus on climate change: How do we know we’re not wrong? In J. F. C. DiMento & P. Doughman (Eds.), Climate change: What it means for us, our children, and our grandchildren (pp. 65–99). Boston: MIT Press.Google Scholar
  22. Oreskes, N., Stainforth, D. A., & Smith, L. A. (2010). Adaptation to global warming: Do climate models tell us what we need to know? Philosophy of Science, 77(5), 1012–1028.CrossRefGoogle Scholar
  23. Parker, W. (2010a). Predicting weather and climate: Uncertainty, ensembles and probability. Studies in History and Philosophy of Modern Physics, 41(3), 263–272.CrossRefGoogle Scholar
  24. Parker, W. (2010b). Whose probabilities? Predicting climate change with ensembles of models. Philosophy of Science, 77(5), 985–997.CrossRefGoogle Scholar
  25. Parker, W. (2013). Ensemble modeling, uncertainty and robust predictions. Wiley Interdisciplinary Reviews: Climate Change, 4(3), 213–223.Google Scholar
  26. Parker, W. S. (2014). Values and uncertainties in climate prediction, revisited. Studies in History and Philosophy of Science, 46, 24–30.CrossRefGoogle Scholar
  27. Reichler, T., & Kim, J. (2008). How well do coupled models simulate today’s climate? Bulletin of the American Meteorological Society, 89(3), 303–311.CrossRefGoogle Scholar
  28. Rougier, J. (2007). Probabilistic inference for future climte using an ensemble of climate model evaluations. Climatic Change, 81, 247–264.CrossRefGoogle Scholar
  29. Rougier, J. (2008). Efficient emulators for multivariate deterministic functions. Journal of Computational and Graphical Statistics, 17(4), 27–843.CrossRefGoogle Scholar
  30. Salmon, M., Earman, J., Glymour, C., Lennox, J. G., Machamer, P., McGuire, J. E., et al. (1992). Introduction to the philosophy of science. Indianapolis and Cambridge: Hackett.Google Scholar
  31. Seager, R., Kushnir, Y., Ting, M. F., Cane, M., Naik, N., & Miller, J. (2008). Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? Journal of Climate, 21, 3261–3281.CrossRefGoogle Scholar
  32. Sexton, D. M. H., & Murphy, J. M. (2012). Multivariate probabilistic projections using imperfect climate models part II: Robustness of methodological choices and consequences for climate sensitivity. Climate Dynamics, 38, 2543–2558.CrossRefGoogle Scholar
  33. Sexton, D. M. H., Murphy, J. M., Collins, M., & Webb, M. J. (2012). Multivariate probabilistic projections using imperfect climate models part I: Outline of methodology. Climate Dynamics, 38, 2513–2542.CrossRefGoogle Scholar
  34. Smith, L. A. (2000). Disentangling uncertainty and error: on the predictability of nonlinear systems. In A. I. Mees (Ed.), Nonlinear Dynamics and Statistics (pp. 31–64). Boston: Birkhauser.Google Scholar
  35. Smith, L. A. (2002). What might we learn from climate forecasts? Proceedings of the National Academy of Science, USA, 4(99), 2487–2492.CrossRefGoogle Scholar
  36. Smith, L. A. (2006). Predictability past predictability present. In T. Palmer & R. Hagedorn (Eds.), Predictability of weather and climate (pp. 217–250). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Smith, L. A., Du, H., Suckling, E. B., & Niehörster, F. (2014). Probabilistic skill in ensemble seasonal forecasts. Quarterly Journal of the Royal Meteorological Society. doi: 10.1002/qj.2403.
  38. Smith, L. A., & Stern, N. (2011). Uncertainty in science and its role in climate policy. Philosophical Transactions of the Royal Society A, 369, 1–24.Google Scholar
  39. Solomon, S., Qin, D., & Manning, M. (Eds.). (2007). Contribution of Working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  40. Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., et al. (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433(7024), 403–406.CrossRefGoogle Scholar
  41. Stainforth, D. A., Allen, M. R., Tredger, E. R., & Smith, L. A. (2007). Confidence, uncertainty and decision-dupport relevance in climate predictions. Philosophical Transaction of the Royal Socity A, 365(1857), 2145–2161.CrossRefGoogle Scholar
  42. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., et al. (Eds.). (2013). Climate change 2013. The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  43. Tang, S., & Dessai, S. (2012). Usable science? The UK climate projections 2009 and decision support for adaptation planning. forthcoming in weather, climate, and society.Google Scholar
  44. Thompson, E. L. (2013). Modelling North Atlantic storms in a changing climate. Ph.D. Thesis. Imperial College, London.Google Scholar
  45. Winsberg, E. (2012). Values and uncertainties in the predictions of global climate models. Kennedy Institute of Ethics Journal, 22(2), 111–137.CrossRefGoogle Scholar
  46. Winsberg, E., & Biddle, J. (2010). Value judgements and the estimation of uncertainty in climate modeling. In P. D. Magnus & J. B. Busch (Eds.), New waves in philosophy of science (pp. 172–197). London: Palgrave Macmillan.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Roman Frigg
    • 1
    • 2
    Email author
  • Leonard A. Smith
    • 3
    • 4
    • 6
  • David A. Stainforth
    • 3
    • 5
    • 7
    • 8
  1. 1.Department of Philosophy, Logic and Scientific MethodLSELondonUK
  2. 2.Centre for Philosophy of Natural and Social Science (CPNSS)LSELondonUK
  3. 3.Centre for the Analysis of Time Series (CATS)LSELondonUK
  4. 4.Pembroke College OxfordOxfordUK
  5. 5.The Grantham Research Institute on Climate Change and the EnvironmentLSELondonUK
  6. 6.Department of StatisticsUniversity of ChicagoChicagoUSA
  7. 7.Department of PhysicsUniversity of WarwickCoventryUK
  8. 8.Environmental Change Institute, University of OxfordOxfordUK

Personalised recommendations