Synthese

, Volume 192, Issue 6, pp 1923–1936 | Cite as

On a puzzle about relations between thought, experience and the motoric

Article

Abstract

Motor representations live a kind of double life. Although paradigmatically involved in performing actions, they also occur when merely observing others act and sometimes influence thoughts about the goals of observed actions. Further, these influences are content-respecting: what you think about an action sometimes depends in part on how that action is represented motorically in you. The existence of such content-respecting influences is puzzling. After all, motor representations do not feature alongside beliefs or intentions in reasoning about action; indeed, thoughts are inferentially isolated from motor representations. So how could motor representations have content-respecting influences on thoughts? Our aim is to solve this puzzle. In so doing, we shall provide the basis for an account of how experience links the motoric with thought. Such an account matters for understanding how humans think about action: in some cases, we have reasons for thoughts about actions that we would not have if we were unable to represent those actions motorically.

Keywords

Motor representation Experience Inferential isolation  Action understanding Social cognition 

References

  1. Beets, Ia M, Rösler, F., & Fiehler, K. (2010). Nonvisual motor learning improves visual motion perception: Evidence from violating the two-thirds power law. Journal of Neurophysiology, 104(3), 1612–1624.CrossRefGoogle Scholar
  2. Berti, A., Bottini, G., Gandola, M., Pia, L., Smania, N., Stracciari, A., et al. (2005). Shared cortical anatomy for motor awareness and motor control. Science, 309(5733), 488–491.CrossRefGoogle Scholar
  3. Berti, A., Spinazzola, L., Pia, L., & Rabuffetti, M. (2008). Motor awareness and motor intention in anosognosia for hemiplegia. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition (Vol. 22, pp. 163–181). Oxford: Oxford University Press.Google Scholar
  4. Bonini, L., Maranesi, M., Livi, A., Fogassi, L., & Rizzolatti, G. (2014). Ventral premotor neurons encoding representations of action during self and others’ inaction. Current Biology 24(14), 1611–1614. doi:10.1016/j.cub.2014.05.047. Retrieved from http://www.sciencedirect.com/science/article/pii/S0960982214006125.
  5. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 42(2), 323–334. doi:10.1016/S0896-6273(04)00181-3. Retreived from http://www.sciencedirect.com/science/article/pii/S0896627304001813.
  6. Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145. doi:10.1111/j.1933-1592.2012.00604.x.CrossRefGoogle Scholar
  7. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex 15(8), 1243–1249. doi:10.1093/cercor/bhi007. Retrieved from http://cercor.oxfordjournals.org/content/15/8/1243.
  8. Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.CrossRefGoogle Scholar
  9. Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology 16(1), 69–74. doi:10.1016/j.cub.2005.10.071. Retrieved from http://www.sciencedirect.com/science/article/pii/S0960982205014089.
  10. Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex 20(9), 2252–2258. doi:10.1093/cercor/bhp291. Retrieved from http://cercor.oxfordjournals.org/content/20/9/2252.abstract.
  11. Deutsch, D., Kuyper, W. L., & Fisher, Y. (1987). The tritone paradox: Its presence and form of distribution in a general population. Music Perception, 5, 79–92.CrossRefGoogle Scholar
  12. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176–180. doi:10.1007/BF00230027.CrossRefGoogle Scholar
  13. Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology 73(6), 2608–2611. Retrieved from http://jn.physiology.org/cgi/content/abstract/73/6/2608.
  14. Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A tms study. European Journal of Neuroscience, 15(2), 399–402.CrossRefGoogle Scholar
  15. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662–667.CrossRefGoogle Scholar
  16. Funk, M., Shiffrar, M., & Brugger, P. (2005). Hand movement observation by individuals born without hands: Phantom limb experience constrains visual limb perception. Experimental Brain Research 164(3), 341–346. doi:10.1007/s00221-005-2255-4. Retrieved from http://www.springerlink.com/content/nm88525qu347m037/abstract/.
  17. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119(2), 593–609. doi:10.1093/brain/119.2.593. Retrieved from http://brain.oxfordjournals.org/content/119/2/593.
  18. Garbarini, F., Rabuffetti, M., Piedimonte, A., Pia, L., Ferrarin, M., Frassinetti, F., et al. (2012). Moving a paralysed hand: bimanual coupling effect in patients with anosognosia for hemiplegia. Brain, 135(5), 1486–1497. doi:10.1093/brain/aws015.CrossRefGoogle Scholar
  19. Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Sciences, 9(6), 290–295.CrossRefGoogle Scholar
  20. Hamilton, A Fd C, & Grafton, S. T. (2008). Action outcomes are represented in human inferior frontoparietal cortex. Cerebral Cortex, 18(5), 1160–1168.CrossRefGoogle Scholar
  21. Jeannerod, M. (1998). The neural and behavioural organization of goal-directed movements. Oxford: Oxford University Press.Google Scholar
  22. Jordan, K. E., Clark, K., & Mitroff, S. R. (2010). See an object, hear an object file: Object correspondence transcends sensory modality. Visual Cognition, 18(4), 492–503. doi:10.1080/13506280903338911.CrossRefGoogle Scholar
  23. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219.CrossRefGoogle Scholar
  24. Kilner, J. M., Paulignan, Y., & Blakemore, S. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.CrossRefGoogle Scholar
  25. Koch, G., Versace, V., Bonnì, S., Lupo, F., Gerfo, E. L., Oliveri, M., & Caltagirone, C. (2010). Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia 48(12), 3513–3520. doi:10.1016/j.neuropsychologia.2010.07.037. Retrieved from http://www.sciencedirect.com/science/article/pii/S0028393210003441.
  26. Marcel, A. J., Tegnér, R., & Nimmo-Smith, I. (2004). Anosognosia for plegia: Specificity, extension, partiality and disunity of bodily unawareness. Cortex 40(1), 19–40. doi:10.1016/S0010-9452(08)70919-5. Retrieved from http://www.sciencedirect.com/science/article/pii/S0010945208709195.
  27. Mercier, C., Reilly, K. T., Vargas, C. D., Aballea, A., & Sirigu, A. (2006). Mapping phantom movement representations in the motor cortex of amputees. Brain 129(8), 2202–2210. doi:10.1093/brain/awl180. Retrieved from http://brain.oxfordjournals.org/content/129/8/2202.
  28. Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks 9(8), 1265–1279. doi:10.1016/S0893-6080(96)00035-4. Retrieved from http://www.sciencedirect.com/science/article/pii/S0893608096000354.
  29. Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition 107(1), 179–217. doi:10.1016/j.cognition.2007.09.003. Retrieved from http://www.sciencedirect.com/science/article/pii/S0010027707002521.
  30. Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008). The sound of actions in apraxia. Current Biology 18(22), 1766–1772. doi:10.1016/j.cub.2008.09.061. Retrieved from http://www.sciencedirect.com/science/article/pii/S0960982208013390.
  31. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154. doi:10.1080/713752551.CrossRefGoogle Scholar
  32. Repp, B. H., & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science 18(1), 6–7. doi:10.1111/j.1467-9280.2007.01839.x. Retrieved from http://pss.sagepub.com/content/18/1/6.
  33. Repp, B. H., & Knoblich, G. (2009). Performed or observed keyboard actions affect pianists’ judgements of relative pitch. The Quarterly Journal of Experimental Psychology 62(11), 2156–2170. doi:10.1080/17470210902745009. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/17470210902745009.
  34. Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the brain: How our minds share actions and emotions. Emotions: Oxford University Press.Google Scholar
  35. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews: Neuroscience, 11(4), 264–274. doi:10.1038/nrn2805.CrossRefGoogle Scholar
  36. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. Experimental Brain Research 71(3), 491–507. doi:10.1007/BF00248742. Retrieved from http://www.springerlink.com/content/m982qw2440424247/.
  37. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews: Neuroscience, 2(9), 661–670.CrossRefGoogle Scholar
  38. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences 11(8), 349–355. doi:10.1016/j.tics.2007.06.005. Retrieved from http://www.sciencedirect.com/science/article/pii/S1364661307001520.
  39. Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science 1(4), 257–264. doi:10.1111/j.1467-9280.1990.tb00210.x. Retrieved from http://pss.sagepub.com/content/1/4/257.
  40. Shimada, S. (2009). Modulation of motor area activity by the outcome for a player during observation of a baseball game. PLoS ONE, 4(11), e8034. doi:10.1371/journal.pone.0008034.CrossRefGoogle Scholar
  41. Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155–165.CrossRefGoogle Scholar
  42. Urgesi, C., Candidi, M., Ionta, S., & Aglioti, S. M. (2007). Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neuroscience 10(1), 30–31. doi:10.1038/nn1815. Retrieved from http://www.nature.com/neuro/journal/v10/n1/abs/nn1815.html.
  43. Villiger, M., Chandrasekharan, S., & Welsh, T. N. (2010). Activity of human motor system during action observation is modulated by object presence. Experimental Brain Research 209, 85–93. doi:10.1007/s00221-010-2522-x. Retrieved from http://www.springerlink.com/content/jk84306781mq700w/fulltext.html.
  44. Wolpert, D. M., Ghahramani, Z., & Jordan, M. (1995). An internal model for sensorimotor integration. Science 269(5232), 1880–1882. doi:10.1126/science.7569931. Retrieved from http://www.sciencemag.org/content/269/5232/1880.abstract.
  45. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions: Biological Sciences, 358(1431), 593–602.CrossRefGoogle Scholar
  46. Zhang, W., & Rosenbaum, D. A. (2007). Planning for manual positioning: the end-state comfort effect for manual abduction-adduction. Experimental Brain Research 184(3), 383–389. doi:10.1007/s00221-007-1106-x. Retrieved from http://www.springerlink.com/content/l626441689148237/.
  47. Zwickel, J., Grosjean, M., & Prinz, W. (2010). On interference effects in concurrent perception and action. Psychological Research 74(2):152–171. doi:10.1007/s00426-009-0226-2. Retrieved from http://www.springerlink.com/content/14781h84887568w3/abstract/.

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Dipartimento di FilosofiaUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of PhilosophyUniversity of WarwickCoventryUK

Personalised recommendations