Advertisement

Synthese

, Volume 194, Issue 10, pp 3761–3787 | Cite as

Undead argument: the truth-functionality objection to fuzzy theories of vagueness

  • Nicholas J. J. Smith
Article

Abstract

From Fine and Kamp in the 70’s—through Osherson and Smith in the 80’s, Williamson, Kamp and Partee in the 90’s and Keefe in the 00’s—up to Sauerland in the present decade, the objection continues to be run that fuzzy logic based theories of vagueness are incompatible with ordinary usage of compound propositions in the presence of borderline cases. These arguments against fuzzy theories have been rebutted several times but evidently not put to rest. I attempt to do so in this paper.

Keywords

Vagueness Fuzzy logic Truth-functionality 

References

  1. Alxatib, S., & Pelletier, J. (2011a). On the psychology of truth-gaps. In R. Nouwen, R. Van Rooij, U. Sauerland, & H.-C. Schmitz (Eds.), Vagueness in communication (pp. 13–36). Berlin: Springer.CrossRefGoogle Scholar
  2. Alxatib, S., & Pelletier, J. (2011b). The psychology of vagueness: Borderline cases and contradictions. Mind and Language, 26, 287–326.CrossRefGoogle Scholar
  3. Baaz, M. (1996). Infinite-valued Gödel logic with 0-1-projections and relativisations. In P. Hájek (Ed.), Gödel’96: Logical foundations of mathematics, computer science, and physics. Lecture notes in logic (Vol. 6). (pp. 23–33). Brno: Springer-Verlag.Google Scholar
  4. Belohlavek, R., & Klir, G. J. (2011a). Fuzzy logic: A tutorial. In R. Belohlavek & G. J. Klir (Eds.), Concepts and fuzzy logic (pp. 45–87). Cambridge, MA: MIT Press.Google Scholar
  5. Belohlavek, R., & Klir, G. J. (2011b). Fallacious perceptions of fuzzy logic in the psychology of concepts. In R. Belohlavek & G. J. Klir (Eds.), Concepts and fuzzy logic (pp. 121–148). Cambridge, MA: MIT Press.Google Scholar
  6. Belohlavek, R., Klir, G. J., Lewis III, H. W., & Way, E. C. (2002). On the capability of fuzzy set theory to represent concepts. International Journal of General Systems, 31, 569–585.CrossRefGoogle Scholar
  7. Belohlavek, R., Klir, G. J., Lewis III, H. W., & Way, E. C. (2009). Concepts and fuzzy sets: Misunderstandings, misconceptions, and oversights. International Journal of Approximate Reasoning, 51, 23–34.CrossRefGoogle Scholar
  8. Bonini, N., Osherson, D., Viale, R., & Williamson, T. (1999). On the psychology of vague predicates. Mind and Language, 14, 377–393.CrossRefGoogle Scholar
  9. Burge, T. (1979). Individualism and the mental. Midwest Studies in Philosophy, 4, 73–121.CrossRefGoogle Scholar
  10. Dubois, D., & Prade, H. (1994). Can we enforce full compositionality in uncertainty calculi? In Proceedings of the twelfth national conference on artificial intelligence (AAAI-94) (pp. 149-54). Menlo Park, CA: AAAI Press.Google Scholar
  11. Egré, P., de Gardelle, V., & Ripley, D. (2013). Vagueness and order effects in color categorization. Journal of Logic, Language and Information, 22(4), 391–420. doi: 10.1007/s10849-013-9183-7.CrossRefGoogle Scholar
  12. Fermüller, C. G. (2011). Comments on ‘Vagueness in language: The case against fuzzy logic revisited’ by Uli Sauerland. In P. Cintula, C. G. Fermüller, L. Godo, & P. Hájek (Eds.), Understanding vagueness: Logical, philosophical and linguistic perspectives. Studies in logic (Vol. 36, pp. 199–202). London: College Publications.Google Scholar
  13. Fermüller, C. G., & Kosik, R. (2006). Combining supervaluation and degree based reasoning under vagueness. In M. Hermann & A. Voronkov (Eds.), Logic for programming, artificial intelligence, and reasoning. Lecture Notes in Computer Science (Vol. 4246, pp. 212–226). Berlin: Springer. doi: 10.1007/11916277_15.
  14. Fine, K. (1975). Vagueness, truth and logic. Synthese, 30, 265–300.CrossRefGoogle Scholar
  15. Fuhrmann, Gy. (1988). “Prototypes” and “fuzziness” in the logic of concepts. Synthese, 75, 317–347.CrossRefGoogle Scholar
  16. Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  17. Hampton, J. A. (2007). Typicality, graded membership, and vagueness. Cognitive Science, 31, 355–384.CrossRefGoogle Scholar
  18. Hampton, J. A. (2011). Concepts and natural language. In R. Belohlavek & G. J. Klir (Eds.), Concepts and fuzzy logic (pp. 233–258). Cambridge, MA: MIT Press.Google Scholar
  19. Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.Google Scholar
  20. Jones, G. V. (1982). Stacks not fuzzy sets: An ordinal basis for prototype theory of concepts. Cognition, 12, 281–290.CrossRefGoogle Scholar
  21. Kalish, C. W. (1995). Essentialism and graded membership in animal and artifact categories. Memory & Cognition, 23, 335–353.CrossRefGoogle Scholar
  22. Kamp, H. (1975). Two theories about adjectives. In E. L. Keenan (Ed.), Formal semantics of natural language (pp. 123–55). Cambridge University Press, Cambridge. Reprinted in Davis, S., & Gillon, B. S. (Eds.). (2004). Semantics: A reader (pp. 541–62). Oxford: Oxford University Press. Page references to latter.Google Scholar
  23. Kamp, H., & Partee, B. (1995). Prototype theory and compositionality. Cognition, 57, 129–191.CrossRefGoogle Scholar
  24. Kay, P. (1975). A model-theoretic approach to folk taxonomy. Social Science Information, 14, 151–166.CrossRefGoogle Scholar
  25. Keefe, R. (2000). Theories of Vagueness. Cambridge: Cambridge University Press.Google Scholar
  26. Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  27. Machina, K. F. (1976). Truth, belief, and vagueness. Journal of Philosophical Logic, 5, 47–78.CrossRefGoogle Scholar
  28. McCloskey, M. E., & Glucksberg, S. (1978). Natural categories: Well defined or fuzzy sets. Memory & Cognition, 6, 462–472.CrossRefGoogle Scholar
  29. Oden, G. C. (1977). Integration of fuzzy logical information. Journal of Experimental Psychology: Human Perception and Performance, 3, 565–575.Google Scholar
  30. Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9, 35–58.CrossRefGoogle Scholar
  31. Osherson, D. N., & Smith, E. E. (1982). Gradedness and conceptual combination. Cognition, 12, 299–318.CrossRefGoogle Scholar
  32. Osherson, D. N., & Smith, E. E. (1997). On typicality and vagueness. Cognition, 64, 189–206.CrossRefGoogle Scholar
  33. Paoli, F. (forthcoming) Truth degrees, closeness, and the sorites. In O. Bueno & A. Abasnezhad (Eds.), On the Sorites Paradox. Springer.Google Scholar
  34. Parikh, R. (1994). Vagueness and utility: The semantics of common nouns. Linguistics and Philosophy, 17(6), 521–535.CrossRefGoogle Scholar
  35. Ripley, D. (2011a). Contradictions at the borders. In R. Nouwen, R. van Rooij, U. Sauerland, & H.-C. Schmitz (Eds.), Vagueness in communication (pp. 169–188). Berlin: Springer.CrossRefGoogle Scholar
  36. Ripley, D. (2011b). Reply to Nicholas Smith’s comments on ‘Inconstancy and inconsistency’. In P. Cintula, C. G. Fermüller, L. Godo, & P. Hájek (Eds.), Understanding vagueness: Logical, philosophical and linguistic perspectives. Studies in logic (Vol. 36, pp. 63–65). London: College Publications.Google Scholar
  37. Ripley, D. (2013). Sorting out the sorites. In K. Tanaka, F. Berto, E. Mares, & F. Paoli (Eds.), Paraconsistency: Logic and applications (pp. 329–348). Dordrecht: Springer.CrossRefGoogle Scholar
  38. Rosch, E. H. (2011). “Slow lettuce”: Categories, concepts, fuzzy sets, and logical deduction. In R. Belohlavek & G. J. Klir (Eds.), Concepts and fuzzy logic (pp. 89–120). Cambridge, MA: MIT Press.Google Scholar
  39. Sauerland, U. (2011). Vagueness in language: The case against fuzzy logic revisited. In P. Cintula, C. G. Fermüller, L. Godo, & P. Hájek (Eds.), Understanding vagueness: Logical, philosophical and linguistic perspectives. Studies in logic (Vol. 36, pp. 185–198). London: College Publications.Google Scholar
  40. Serchuk, P., Hargreaves, I., & Zach, R. (2011). Vagueness, logic and use: Four experimental studies on vagueness. Mind and Language, 26, 540–573.CrossRefGoogle Scholar
  41. Smith, E. E., & Osherson, D. N. (1988). Compositionality and typicality. In S. Schiffer & S. Steele (Eds.), Cognition and representation (pp. 37–52). Boulder, CO: Westview Press.Google Scholar
  42. Smith, N. J. J. (2008). Vagueness and degrees of truth. Oxford: Oxford University Press. Paperback 2013.Google Scholar
  43. Smith, N. J. J. (2011). Comments on ‘Inconstancy and inconsistency’ by David Ripley. In P. Cintula, C. G. Fermüller, L. Godo, & P. Hájek (Eds.), Understanding vagueness: Logical, philosophical and linguistic perspectives. Studies in logic (Vol. 36, pp. 59–62). London: College Publications.Google Scholar
  44. Smith, N. J. J. (2012). Many-valued logics. In G. Russell & D. Graff Fara (Eds.), The Routledge companion to philosophy of language (pp. 636–651). London: Routledge.Google Scholar
  45. Smith, N. J. J. (2014). Vagueness, uncertainty and degrees of belief: Two kinds of indeterminacy—one kind of credence. Erkenntnis (Special Issue: Papers From the Prague International Colloquium on Epistemic Aspects of Many-Valued Logics), 79, 1027–1044.Google Scholar
  46. Storms, G., de Boeck, P., van Mechelen, I., & Ruts, W. (1998). Not guppies, nor goldfish, but tumble dryers, Noriega, Jesse Jackson, panties, car crashes, bird books, and Stevie Wonder. Memory & Cognition, 26, 143–144.CrossRefGoogle Scholar
  47. Takeuti, G., & Titani, S. (1987). Globalization of intuitionistic set theory. Annals of Pure and Applied Logic, 33, 195–211. doi: 10.1016/0168-0072(87)90081-9.CrossRefGoogle Scholar
  48. Tappenden, J. (1993). The liar and sorites paradoxes: Toward a unified treatment. Journal of Philosophy, 90, 551–577.CrossRefGoogle Scholar
  49. Urquhart, A. (1986). Many-valued logic. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 3, pp. 71–116). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  50. Verkuilen, J., Kievit, R. A., & Scholten, A. Z. (2011). Representing concepts by fuzzy sets. In R. Belohlavek & G. J. Klir (Eds.), Concepts and fuzzy logic (pp. 149–176). Cambridge, MA: MIT Press.Google Scholar
  51. Williamson, T. (1994). Vagueness. London: Routledge.Google Scholar
  52. Zadeh, L. A. (1978). PRUF—a meaning representation language for natural languages. International Journal of Man-Machine Studies, 10, 395–460.Google Scholar
  53. Zadeh, L. A. (1982). A note on prototype theory and fuzzy sets. Cognition, 12, 291–297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of SydneySydneyAustralia

Personalised recommendations