Synthese

, Volume 192, Issue 5, pp 1559–1580

Many worlds: decoherent or incoherent?

Article

Abstract

We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on our analysis, this grounding can only plausibly be done in precisely the probabilistic terms that lead to conceptual conflict. Thus, the incoherence problems presented necessitate either the provision of a new, non-probabilistic empirical grounding for the notions of robustness and emergence in the context of decoherence, or the abandonment of the Deutsch–Wallace–Everett programme for quantum theory.

Keywords

Quantum mechanics Decoherence Emergence Probability  Everett interpretation Many worlds 

References

  1. Adlam, E. (2014). The problem of confirmation in the everett interpretation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 47(0), 21–32. doi:10.1016/j.shpsb.2014.03.004. URL http://www.sciencedirect.com/science/article/pii/S1355219814000276.
  2. Albert, D. (2010). Probablity in the everett picture. In S. Saunders, J. Barrett, D. Wallace, & A. Kent (Eds.) Many worlds? Everett, quantum theory, and reality (chap. 11, pp. 354–368). Oxford: Oxford University Press. URL http://www.ingentaconnect.com/content/oso/6510144/2010/00000001/00000001/art00016.
  3. Bain, J. (2012). Effective field theories. URL http://ls.poly.edu/jbain/papers/EFTs.pdf.
  4. Baker, D. J. (2007). Measurement outcomes and probability in everettian quantum mechanics. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38(1), 153–169. doi:10.1016/j.shpsb.2006.05.003. URL http://www.sciencedirect.com/science/article/pii/S1355219806000694.
  5. Dawid, R., & Thébault, K. P. (2014). Against the empirical viability of the deutsch-wallace-everett approach to quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 47(0), 55–61. doi:10.1016/j.shpsb.2014.05.005. URL http://www.sciencedirect.com/science/article/pii/S1355219814000562.
  6. Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1988), 3129–3137. doi:10.1098/rspa.1999.0443. URL http://rspa.royalsocietypublishing.org/content/455/1988/3129.abstract.
  7. Dizadji-Bahmani, F. (2013). The probability problem in everettian quantum mechanics persists. The British Journal for the Philosophy of Science p. axt035.Google Scholar
  8. Georgi, H. (1993). Effective field theory. Annual Review of Nuclear and Particle Science, 43(1), 209–252. doi:10.1146/annurev.ns.43.120193.001233.CrossRefGoogle Scholar
  9. Hartmann, S. (2001). Effective field theories, reductionism and scientific explanation. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 32(2), 267–304. doi:10.1016/S1355-2198(01)00005-3.CrossRefGoogle Scholar
  10. Hemmo, M., & Pitowsky, I. (2007). Quantum probability and many worlds. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38, 333–350.CrossRefGoogle Scholar
  11. Kent, A. (2010). One world versus many: The inadequacy of everettian accounts of evolution, probability, and scientific confirmation. In S. Saunders, J. Barrett, D. Wallace, & A. Kent (eds.), Many worlds? Everett, quantum theory, and reality (chap. 10, pp. 307–355). Oxford: Oxford University Press. URL http://www.ingentaconnect.com/content/oso/6510144/2010/00000001/00000001/art00016.
  12. Lewis, D. (1980). A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), Studies in inductive logic and probability (pp. 263–293). Berkeley: University of California Press.Google Scholar
  13. Lewis, P. (2006). Uncertainty and probability for branching selves. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38(1), 1/14.Google Scholar
  14. Price, H. (2010). Decisions, decisions, decisions: Can savage salvage everettian probability? In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (pp. 369–391). Oxford: Oxford University Press.Google Scholar
  15. Rae, A. I. (2009). Everett and the born rule. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 40(3), 243–250. doi:10.1016/j.shpsb.2009.06.001. URL http://www.sciencedirect.com/science/article/pii/S1355219809000306.
  16. Saunders, S. (1998). Time, quantum mechanics, and probability. Synthese, 114(3), 373–404. doi:10.1023/A:1005079904008.CrossRefGoogle Scholar
  17. Saunders, S. (2004). Derivation of the born rule from operational assumptions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2046), 1771–1788. doi:10.1098/rspa.2003.1230. URL http://rspa.royalsocietypublishing.org/content/460/2046/1771.abstract.
  18. Saunders, S. (2005). What is probability? In E. Avshalom, S. Dolev, & N. Kolenda (Eds.), Quo vadis quantum mechanics?, The frontiers collection (pp. 209–238). New York: Springer.CrossRefGoogle Scholar
  19. Silberstein, M. (2012). Emergence and reduction in context: Philosophy of science and/or analytic metaphysics. Metascience, 1–16. doi:10.1007/s11016-012-9671-4.
  20. Valentini, A., & Westman, H. (2005). Dynamical origin of quantum probabilities. Royal Society of London Proceedings Series A, 461, 253–272. doi:10.1098/rspa.2004.1394.CrossRefGoogle Scholar
  21. Wallace, D. (2002). Quantum probability and decision theory, revisited. URL http://arxiv.org/abs/quant-ph/0211104v1.
  22. Wallace, D. (2007). Quantum probability from subjective likelihood: Improving on Deutsch’s proof of the probability rule. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38(2), 311–332.CrossRefGoogle Scholar
  23. Wallace, D. (2009). A formal proof of the born rule from decision-theoretic assumptions. arXiv:0906.2718v1.
  24. Wallace, D. (2010). Decoherence and ontology. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (chap. 1, pp. 34–72). Oxford: Oxford University Press.Google Scholar
  25. Wallace, D. (2012). The emergent multiverse. Oxford: Oxford University Press.CrossRefGoogle Scholar
  26. Zurek, W. H. (2003). Decoherence and the transition from quantum to classical - revisited. Physics Today, 44(10), 2–37. URL http://arxiv.org/abs/quant-ph/0306072v1.
  27. Zurek, W. H. (2005). Probabilities from entanglement, Born’s rule \({p}_{k}=\mid \psi _{k}\mid ^{2}\) from envariance. Physical Review A, 71052105. doi:10.1103/PhysRevA.71.052105.
  28. Zurek, W. H. (2010). Quantum jumps, Born’s rule, and objective reality. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (chap. 13, pp. 409–432). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLudwig Maximilians UniversitätMunichGermany

Personalised recommendations