, Volume 193, Issue 5, pp 1345–1385 | Cite as

What is episodic memory if it is a natural kind?

  • Sen ChengEmail author
  • Markus Werning


Colloquially, episodic memory is described as “the memory of personally experienced events”. Even though episodic memory has been studied in psychology and neuroscience for about six decades, there is still great uncertainty as to what episodic memory is. Here we ask how episodic memory should be characterized in order to be validated as a natural kind. We propose to conceive of episodic memory as a knowledge-like state that is identified with an experientially based mnemonic representation of an episode that allows for a mnemonic simulation thereof. We call our analysis the Sequence Analysis of Episodic Memory since episodes will be analyzed in terms of sequences of events. Our philosophical analysis of episodic memory is driven and supported by experimental results from psychology and neuroscience. We discuss selected experimental results that provide exemplary evidence for uniform causal mechanisms underlying the properties of episodic memory and argue that episodic memory is a natural kind. The argumentation proceeds along three cornerstones: First, psychological evidence suggests that a violation of any of the proposed conditions for episodic memory amounts to a deficiency of episodic memory and no form of memory or cognitive process but episodic memory fulfills them. Second, empirical results support a claim that the principal anatomical substrate of episodic memory is the hippocampus. Finally, we can pin down causal mechanisms onto neural activities in the hippocampus to explain the psychological states and processes constituting episodic memory.


Events Neural sequences Replay Mental time travel Memory trace Mnemonic simulation 



We thank Thomas Suddendorf for helpful discussions and Kevin Reuter for comments on the manuscript. This work was supported by a Grant (SFB 874, project B2) from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) and a Grant from the Stiftung Mercator.


  1. Aggleton, J. P., Shaw, C., & Gaffan, E. A. (1992). The performance of postencephalitic amnesic subjects on two behavioural tests of memory: Concurrent discrimination learning and delayed matching-to-sample. Cortex, 28, 359–372.CrossRefGoogle Scholar
  2. Agster, K. L., Fortin, N. J., & Eichenbaum, H. (2002). The hippocampus and disambiguation of overlapping sequences. Journal of Neuroscience, 22, 5760–5768.Google Scholar
  3. Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106, 20–29. doi: 10.1016/j.jecp.2009.11.003.CrossRefGoogle Scholar
  4. Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory. Child Development, 80, 606–621. doi: 10.1111/j.1467-8624.2009.01282.x.CrossRefGoogle Scholar
  5. Aly, M., Ranganath, C., & Yonelinas, A. P. (2013). Detecting changes in scenes: The hippocampus is critical for strength-based perception. Neuron, 78, 1127–1137. doi: 10.1016/j.neuron.2013.04.018.CrossRefGoogle Scholar
  6. Amarasingham, A., & Levy, W. B. (1998). Predicting the distribution of synaptic strengths and cell firing correlations in a self-organizing, sequence prediction model. Neural Computation, 10, 25–57.CrossRefGoogle Scholar
  7. Axmacher, N., Elger, C. E., & Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131, 1806–1817. doi: 10.1093/brain/awn103.CrossRefGoogle Scholar
  8. Azizi, A. H., Schieferstein, N., & Cheng, S. (2014). The transformation from grid cells to place cells is robust to noise in the grid pattern. Hippocampus, 24, 912–919. doi: 10.1002/hipo.22306.CrossRefGoogle Scholar
  9. Azizi, A. H., Wiskott, L., & Cheng, S. (2013). A computational model for preplay in the hippocampus. Frontiers in Computational Neuroscience, 7, 161. doi: 10.3389/fncom.2013.00161.CrossRefGoogle Scholar
  10. Babb, S. J., & Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning and Motivation, 36, 177–189. doi: 10.1016/j.lmot.2005.02.009.CrossRefGoogle Scholar
  11. Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: 10.1146/annurev-psych-120710-100422.CrossRefGoogle Scholar
  12. Baddeley, A., & Wilson, B. A. (2002). Prose recall and amnesia: Implications for the structure of working memory. Neuropsychologia, 40, 1737–1743.CrossRefGoogle Scholar
  13. Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89. doi: 10.1016/S0079-7421(08)60452-1.CrossRefGoogle Scholar
  14. Barense, M. D., Groen, I Ia, Lee, A. C. H., et al. (2012). Intact memory for irrelevant information impairs perception in amnesia. Neuron, 75, 157–167. doi: 10.1016/j.neuron.2012.05.014.CrossRefGoogle Scholar
  15. Bauer, P. J., Doydum, A. O., Pathman, T., et al. (2012). It’s all about location, location, location: Children’s memory for the “where” of personally experienced events. Journal of Experimental Child Psychology, 113, 510–522. doi: 10.1016/j.jecp.2012.06.007.CrossRefGoogle Scholar
  16. Baxter, M. G. (2009). Involvement of medial temporal lobe structures in memory and perception. Neuron, 61, 667–677. doi: 10.1016/j.neuron.2009.02.007.CrossRefGoogle Scholar
  17. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15. doi: 10.1016/0010-0277(94)90018-3.CrossRefGoogle Scholar
  18. Bedford, F. L. (1997). False categories in cognition: The not-the-liver fallacy. Cognition, 64, 231–248.CrossRefGoogle Scholar
  19. Bermudez, J. L. (1995). Nonconceptual content: From perceptual experience to subpersonal computational states. Mind and Language, 10, 333–369. doi: 10.1111/j.1468-0017.1995.tb00019.x.CrossRefGoogle Scholar
  20. Bernecker, S. (2010). Memory : A philosophical study. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Bernecker, S. (2008). The metaphysics of memory. New York: Springer.CrossRefGoogle Scholar
  22. Berry, C. J., Shanks, D. R., & Henson, R Na. (2008). A single-system account of the relationship between priming, recognition, and fluency. Journal of Experimental Psychology Learning Memory and Cognition, 34, 97–111. doi: 10.1037/0278-7393.34.1.97.CrossRefGoogle Scholar
  23. Bieri, P. (1995). Why is consciousness puzzling? In T. Metzinger (Ed.), Conscious Experience (pp. 45–60). Paderborn: Schoening, Imprint Academic.Google Scholar
  24. Bischof, N. (1980). On the pyhlogeny of human morality. In G. S. Stent (Ed.), Morality as a biological phenomenon. Report of the Dahlem workshop on biology and morals (pp. 48–66). Berkeley: Universtity of California Press.Google Scholar
  25. Bischof-Köhler, D. (1985). Zur phylogenese menschlicher motivation [on the phylogeny of human motivation]. In L. H. Eckensberger & M. M. Baltes (Eds.), Emotion und reflexivität (pp. 3–47). München: Urban & Schwarzenberg.Google Scholar
  26. Bontempi, B., Laurent-Demir, C., Destrade, C., & Jaffard, R. (1999). Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature, 400, 671–675. doi: 10.1038/23270.CrossRefGoogle Scholar
  27. Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical studies, 61, 127–148. doi: 10.1007/bf00385837.CrossRefGoogle Scholar
  28. Boyd, R. (1999). Kinds, complexity and multiple realization. Philosophical studies, 95, 67–98. doi: 10.1023/a%253a1004511407133.
  29. Bragin, A., Engel, J., Wilson, C., et al. (1999). High-frequency oscillations in human brain. Hippocampus, 9, 137–142.Google Scholar
  30. Buckley, M. J., Booth, M. C., Rolls, E. T., & Gaffan, D. (2001). Selective perceptual impairments after perirhinal cortex ablation. Journal of Neuroscience, 21, 9824–9836.Google Scholar
  31. Buhry, L., Azizi, A. H., & Cheng, S. (2011). Reactivation, replay, and preplay: How it might all fit together. Neural Plasticity, 2011, 203462. doi: 10.1155/2011/203462.CrossRefGoogle Scholar
  32. Burgess, N., Maguire, Ea, & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35, 625–641. doi: 10.1016/S0896-6273(02)00830-9.CrossRefGoogle Scholar
  33. Bussey, T. J., Saksida, L. M., & Murray, E. A. (2002). Perirhinal cortex resolves feature ambiguity in complex visual discriminations. European Journal of Neuroscience, 15, 365–374.CrossRefGoogle Scholar
  34. Buzsaki, G. (1989). Two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience, 31, 551–570.CrossRefGoogle Scholar
  35. Buzsáki, G., Leung, L. W., & Vanderwolf, C. H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Research, 287, 139–171.CrossRefGoogle Scholar
  36. Cheng, S. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, 7, 88. doi: 10.3389/fncir.2013.00088.CrossRefGoogle Scholar
  37. Cheng, S., & Frank, L. (2011). The structure of networks that produce the transformation from grid cells to place cells. Neuroscience, 197, 293–306. doi: 10.1016/j.neuroscience.2011.09.002.CrossRefGoogle Scholar
  38. Cheng, S., & Frank, L. M. (2008). New experiences enhance coordinated neural activity in the hippocampus. Neuron, 57, 303–313. doi: 10.1016/j.neuron.2007.11.035.CrossRefGoogle Scholar
  39. Cheng, S., & Werning, M. (2013). Composition and replay of mnemonic sequences : The contributions of REM and slow-wave sleep to episodic memory. Behavioral and Brain Science, 36, 610–611. doi: 10.1017/S0140525X13001234.CrossRefGoogle Scholar
  40. Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685–691. doi: 10.1038/nrn1180.CrossRefGoogle Scholar
  41. Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. doi: 10.1038/26216.CrossRefGoogle Scholar
  42. Cohen, J., & Meskin, A. (2004). On the epistemic value of photographs. Journal of Aesthetics and Art Criticism, 62, 197–210.CrossRefGoogle Scholar
  43. Conway, Ma. (2009). Episodic memories. Neuropsychologia, 47, 2305–2313. doi: 10.1016/j.neuropsychologia.2009.02.003.CrossRefGoogle Scholar
  44. Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6. doi: 10.1016/j.tics.2012.10.009.CrossRefGoogle Scholar
  45. Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323–338. doi: 10.1016/S0079-6123(07)00020-9.CrossRefGoogle Scholar
  46. Cowan, N. (1995). Attention and memory. Oxford: Oxford University Press.Google Scholar
  47. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. doi: 10.1016/S0022-5371(80)90312-6.CrossRefGoogle Scholar
  48. Davidson, D. (1980). The logical form of action sentences. Essays on actions and events (pp. 105–121). Oxford: Clarendon Press. [orginally published in 1967].Google Scholar
  49. Dere, E., Huston, J. P., & De Souza Silva, Ma. (2005). Episodic-like memory in mice: Simultaneous assessment of object, place and temporal order memory. Brain Research, and Brain Research Protocols, 16, 10–19. doi: 10.1016/j.brainresprot.2005.08.001.CrossRefGoogle Scholar
  50. Dew, I. T. Z., & Cabeza, R. (2011). The porous boundaries between explicit and implicit memory: Behavioral and neural evidence. Annals of the New York Academy of Sciences, 1224, 174–190. doi: 10.1111/j.1749-6632.2010.05946.x.CrossRefGoogle Scholar
  51. Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50, 145–157. doi: 10.1016/j.neuron.2006.02.023.CrossRefGoogle Scholar
  52. Dragoi, G., & Tonegawa, S. (2011). Preplay of future place cell sequences by hippocampal cellular assemblies. Nature, 469, 397–401. doi: 10.1038/nature09633.CrossRefGoogle Scholar
  53. Eichenbaum, H., Dudchenko, P., Wood, E., et al. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226.CrossRefGoogle Scholar
  54. Erez, J., Lee, A. C. H., & Barense, M. D. (2013). It does not look odd to me: Perceptual impairments and eye movements in amnesic patients with medial temporal lobe damage. Neuropsychologia, 51, 168–180. doi: 10.1016/j.neuropsychologia.2012.11.003.CrossRefGoogle Scholar
  55. Eschenko, O., Ramadan, W., Mölle, M., Born, J., & Sara, S. J. (2008). Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learning and Memory, 15(4), 222–228. doi: 10.1101/lm.726008.
  56. Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318, 1147–1150. doi: 10.1126/science.1148979.CrossRefGoogle Scholar
  57. Ezzyat, Y., & Davachi, L. (2011). What constitutes an episode in episodic memory? Psychological Science, 22, 243–252. doi: 10.1177/0956797610393742.CrossRefGoogle Scholar
  58. Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5, 458–462. doi: 10.1038/nn834.Google Scholar
  59. Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113, 44–66. doi: 10.1037/0033-2909.113.1.44.CrossRefGoogle Scholar
  60. Gelbard-Sagiv, H., Mukamel, R., Harel, M., et al. (2008). Internally generated reactivation of single neurons in human hippocampus during free recall. Science, 322, 96–101. doi: 10.1126/science.1164685.CrossRefGoogle Scholar
  61. Girardeau, G., Benchenane, K., Wiener, S. I., et al. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223. doi: 10.1038/nn.2384.CrossRefGoogle Scholar
  62. Golby, A. J., Poldrack, R. A., Brewer, J. B., et al. (2001). Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain, 124, 1841–1854. doi: 10.1093/brain/124.9.1841.CrossRefGoogle Scholar
  63. Goldman, A. I. (1986). Epistemology and cognition. Cambridge, MA: Harvard University Press.Google Scholar
  64. Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology Learning Memory and Cognition, 11, 501–518.CrossRefGoogle Scholar
  65. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Science, 27, 377–396. doi: 10.1017/S0140525X04000093.Google Scholar
  66. Gupta, A. S., van der Meer, M. A., Touretzky, D. S., & Redish, D. D. (2012). Segmentation of spatial experience by hippocampal \(\uptheta \) sequences. Nature Neuroscience, 15, 1032–1039. doi:  10.1038/nn.3138.CrossRefGoogle Scholar
  67. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65, 695–705. doi: 10.1016/j.neuron.2010.01.034.CrossRefGoogle Scholar
  68. Hafting, T., Fyhn, M., Molden, S., et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806. doi: 10.1038/nature03721.CrossRefGoogle Scholar
  69. Hampton, R. R. (2005). Monkey perirhinal cortex is critical for visual memory, but not for visual perception: Reexamination of the behavioural evidence from monkeys. Quarterly journal of experimental psychology. B, 58, 283–299. doi: 10.1080/02724990444000195.CrossRefGoogle Scholar
  70. Hannula, D. E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63, 592–599. doi: 10.1016/j.neuron.2009.08.025.CrossRefGoogle Scholar
  71. Harand, C., Bertran, F., La Joie, R., et al. (2012). The hippocampus remains activated over the long term for the retrieval of truly episodic memories. PLoS One, 7, e43495. doi: 10.1371/journal.pone.0043495.CrossRefGoogle Scholar
  72. Hargreaves, E. L., Rao, G., Lee, I., & Knierim, J. J. (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science, 308, 1792–1794. doi: 10.1126/science.1110449.CrossRefGoogle Scholar
  73. Hartley, T., Bird, C. M., Chan, D., et al. (2007). The hippocampus is required for short-term topographical memory in humans. Hippocampus, 17, 34–48. doi: 10.1002/hipo.20240.CrossRefGoogle Scholar
  74. Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences USA, 104, 1726–1731. doi: 10.1073/pnas.0610561104.CrossRefGoogle Scholar
  75. Hasselmo, M. E. (2012). How we remember: Brain mechanisms of episodic memory. Cambridge, MA: MIT Press.Google Scholar
  76. Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews Neuroscience, 11, 523–532. doi: 10.1038/nrn2850.CrossRefGoogle Scholar
  77. Hodges, W. (2001). Formal features of compositionality. Journal of Logic, Language and Information, 10, 7–28.CrossRefGoogle Scholar
  78. Hoffman, K. L., & McNaughton, B. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science, 297, 2070–2073. doi: 10.1126/science.1073538.CrossRefGoogle Scholar
  79. Holdstock, J. S., Gutnikov, Sa, Gaffan, D., & Mayes, a R. (2000). Perceptual and mnemonic matching-to-sample in humans: Contributions of the hippocampus, perirhinal and other medial temporal lobe cortices. Cortex, 36, 301–322.CrossRefGoogle Scholar
  80. Holdstock, J. S., Shaw, C., & Aggleton, J. P. (1995). The performance of amnesic subjects on tests of delayed matching-to-sample and delayed matching-to-position. Neuropsychologia, 33, 1583–1596.CrossRefGoogle Scholar
  81. Jacobsen, C. F. (1935). Functions of frontal association areasin primates. Archives of Neurology & Psychiatry, 33, 558. doi: 10.1001/archneurpsyc.1935.02250150108009.CrossRefGoogle Scholar
  82. Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory. Science, 336, 1454–1458. doi: 10.1126/science.1217230.
  83. James, L. E., & MacKay, D. G. (2001). H.M., word knowledge, and aging: Support for a new theory of long-term retrograde amnesia. Psychological Science, 12, 485–492.CrossRefGoogle Scholar
  84. Jonides, J., Lewis, R. L., Nee, D. E., et al. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224. doi: 10.1146/annurev.psych.59.103006.093615.CrossRefGoogle Scholar
  85. Kahana, M. J., Howard, M. W., & Polyn, S. M. (2008). Associative retrieval processes in episodic memory. In J. H. Byrne (Ed.), Learning and Memory: A Comprehensive Reference (pp. 467–490). Oxford: Academic Press.Google Scholar
  86. Kelly, S. D. (2001). The non-conceptual content of perceptual experience: Situation dependence and fineness of grain. Philosophy and Phenomenological Research, 62, 601–608. doi: 10.1111/j.1933-1592.2001.tb00076.x.CrossRefGoogle Scholar
  87. Kim, S., Jeneson, A., van der Horst, A. S., et al. (2011). Memory, visual discrimination performance, and the human hippocampus. Journal of Neuroscience, 31, 2624–2629. doi: 10.1523/JNEUROSCI.5954-10.2011.CrossRefGoogle Scholar
  88. Klein, S. B. (2013). Making the case that episodic recollection is attributable to operations occurring at retrieval rather than to content stored in a dedicated subsystem of long-term memory. Frontiers in Behavioral Neuroscience, 7, 3. doi: 10.3389/fnbeh.2013.00003.CrossRefGoogle Scholar
  89. Köhler, W. (1925). The mentality of apes. London: Routledge, Trench, Trubner & Co., Ltd.Google Scholar
  90. Kudrimoti, H. S., Barnes, C. A., & McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics. Journal of Neuroscience, 19, 4090–4101.Google Scholar
  91. Lee, A. C. H., Bussey, T. J., Murray, E. A., et al. (2005). Perceptual deficits in amnesia: Challenging the medial temporal lobe “mnemonic” view. Neuropsychologia, 43, 1–11. doi: 10.1016/j.neuropsychologia.2004.07.017.CrossRefGoogle Scholar
  92. Lee, A. C. H., & Rudebeck, S. R. (2010). Human medial temporal lobe damage can disrupt the perception of single objects. Journal of Neuroscience, 30, 6588–6594. doi: 10.1523/JNEUROSCI.0116-10.2010.CrossRefGoogle Scholar
  93. Lee, A. C. H., Yeung, L.-K., & Barense, M. D. (2012). The hippocampus and visual perception. Frontiers in Human Neuroscience, 6, 91. doi: 10.3389/fnhum.2012.00091.CrossRefGoogle Scholar
  94. Lee, A. K., & Wilson, Ma. (2004). A combinatorial method for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative time order. Journal of Neurophysiology, 92, 2555–2573. doi: 10.1152/jn.01030.2003.CrossRefGoogle Scholar
  95. Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36, 1183–1194.CrossRefGoogle Scholar
  96. Levy, D. A., Bayley, P. J., & Squire, L. R. (2004). The anatomy of semantic knowledge: Medial vs. lateral temporal lobe. Proceedings of the National Academy of Sciences USA, 101, 6710–6715. doi: 10.1073/pnas.0401679101.CrossRefGoogle Scholar
  97. Levy, W. B. W. (1996). A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus, 6, 579–590.Google Scholar
  98. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.Google Scholar
  99. Lindsay, D. S., Allen, B. P., Chan, J. C. K., & Dahl, L. C. (2004). Eyewitness suggestibility and source similarity: Intrusions of details from one event into memory reports of another event. Journal of Memory and Language, 50, 96–111. doi: 10.1016/j.jml.2003.08.007.CrossRefGoogle Scholar
  100. Lisman, J. E. (1999). Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22, 233–242.CrossRefGoogle Scholar
  101. Loftus, E. F. (1993). The reality of repressed memories. American Psychologist, 48, 518–537.CrossRefGoogle Scholar
  102. Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning and Verbal Behavior, 13, 585–589. doi: 10.1016/S0022-5371(74)80011-3.CrossRefGoogle Scholar
  103. Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25, 720–725.CrossRefGoogle Scholar
  104. Machery, E. (2009). Doing without concepts. Oxford: Oxford University Press.CrossRefGoogle Scholar
  105. Marsh, E. J., Eslick, A. N., & Fazio, L. K. (2008). False Memories. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 221–238). Oxford: Academic Press.CrossRefGoogle Scholar
  106. Martin, C. B., & Deutscher, M. (1966). Remembering. Philosophy Review, 75, 161. doi: 10.2307/2183082.Google Scholar
  107. Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331–340. doi: 10.1007/s10071-009-0282-4.CrossRefGoogle Scholar
  108. McCabe, D. P., Roediger, H. L., & Karpicke, J. D. (2011). Automatic processing influences free recall: Converging evidence from the process dissociation procedure and remember-know judgments. Memory & Cognition, 39, 389–402. doi: 10.3758/s13421-010-0040-5.CrossRefGoogle Scholar
  109. McClelland, J. J. L., McNaughton, B. L. B., & O’Reilly, R. R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.CrossRefGoogle Scholar
  110. McKoon, G., & Ratcliff, R. (1986). Automatic activation of episodic information in a semantic memory task. Journal of Experimental Psychology Learning Memory and Cognition, 12, 108–115.CrossRefGoogle Scholar
  111. Michaelian, K. (2010). Is memory a natural kind? Memory Studies, 4, 170–189. doi: 10.1177/1750698010374287.CrossRefGoogle Scholar
  112. Michaelian, K. (2011). Generative memory. Philosophy of Psychology, 24, 323–342. doi: 10.1080/09515089.2011.559623.CrossRefGoogle Scholar
  113. Michaelian, K. (2011b). The information effect: Constructive memory, testimony, and epistemic luck. Synthese, 190, 2429–2456. doi: 10.1007/s11229-011-9992-7.CrossRefGoogle Scholar
  114. Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90. doi: 10.1001/archneur.1963.00460070100010.CrossRefGoogle Scholar
  115. Morris, R., Garrud, P., Rawlins, J., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.CrossRefGoogle Scholar
  116. Morris, R. G. (2001). Episodic-like memory in animals: Psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 1453–1465. doi: 10.1098/rstb.2001.0945.CrossRefGoogle Scholar
  117. Mroczko-Wąsowicz, A., & Werning, M. (2012). Synesthesia, sensory-motor contingency, and semantic emulation: How swimming style-color synesthesia challenges the traditional view of synesthesia. Frontiers in Psychology, 3, 279. doi: 10.3389/fpsyg.2012.00279.CrossRefGoogle Scholar
  118. Mullally, S. L., Hassabis, D., & Maguire, E. A. (2012). Scene construction in amnesia: An FMRI study. Journal of Neuroscience, 32, 5646–5653. doi: 10.1523/JNEUROSCI.5522-11.2012.CrossRefGoogle Scholar
  119. Mullally, S. L., Vargha-Khadem, F., & Maguire, E. A. (2014). Scene construction in developmental amnesia: An fMRI study. Neuropsychologia, 52, 1–10. doi: 10.1016/j.neuropsychologia.2013.11.001.CrossRefGoogle Scholar
  120. Müller, G. E., & Pilzecker, A. (1900). Experimentelle Beiträge zur Lehre vom Gedächtnis. Zeitschrift für Psychologie. Ergänzungsband, 1, 1–300.Google Scholar
  121. Nádasdy, Z., Hirase, H., Czurkó, A., et al. (1999). Replay and time compression of recurring spike sequences in the hippocampus. Journal of Neuroscience, 19, 9497–9507.Google Scholar
  122. Nadel, L., & Moscovitch, M. (1998). Hippocampal contributions to cortical plasticity. Neuropharmacology, 37, 431–439.CrossRefGoogle Scholar
  123. Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217–227. doi: 10.1016/S0959-4388(97)80010-4.CrossRefGoogle Scholar
  124. Nadel, L., Samsonovich, A., Ryan, L., & Moscovitch, M. (2000). Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus, 10, 352–368.Google Scholar
  125. Naqshbandi, M., & Roberts, W. A. (2006). Anticipation of future events in squirrel monkeys (Saimiri sciureus) and rats (Rattus norvegicus): Tests of the Bischof-Kohler hypothesis. Journal of Comparative Psychology, 120, 345–357. doi: 10.1037/0735-7036.120.4.34.CrossRefGoogle Scholar
  126. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.CrossRefGoogle Scholar
  127. O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.Google Scholar
  128. O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317–330. doi: 10.1002/hipo.450030307.CrossRefGoogle Scholar
  129. Owen, A. M., Sahakian, B. J., Semple, J., et al. (1995). Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 33, 1–24.CrossRefGoogle Scholar
  130. Pagin, P., & Westerståhl, D. (2010). Compositionality. In C. Maienborn, K. von Heusinger, & P. Portner (Eds.), Semantics: an international handbook of natural language meaning. Berlin: Mouton de Gruyter.Google Scholar
  131. Parsons, T. (1990). Events in the semantics of english. Cambridge: MIT Press.Google Scholar
  132. Patihis, L., Ho, L. Y., Tingen, I. W., et al. (2014). Are the “memory wars” over? A scientist-practitioner gap in beliefs about repressed memory. Psychological Science, 25, 519–530. doi: 10.1177/0956797613510718.CrossRefGoogle Scholar
  133. Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. Journal of Neuroscience, 9, 2907–2918.Google Scholar
  134. Paxton, R., & Hampton, R. R. (2009). Tests of planning and the Bischof-Köhler hypothesis in rhesus monkeys (Macaca mulatta). Behavioural Processes, 80, 238–246. doi: 10.1016/j.beproc.2008.12.016.CrossRefGoogle Scholar
  135. Payne, D. G. (1987). Hypermnesia and reminiscence in recall: A historical and empirical review. Psychological Bulletin, 101, 5–27. doi: 10.1037/0033-2909.101.1.5.CrossRefGoogle Scholar
  136. Paz, R., Gelbard-Sagiv, H., Mukamel, R., et al. (2010). A neural substrate in the human hippocampus for linking successive events. Proceedings of the National Academy of Sciences USA, 107, 6046–6051. doi: 10.1073/pnas.0910834107.CrossRefGoogle Scholar
  137. Pianesi, F., & Varzi, A. C. (2000). Events and Event Talk: An Introduction. In J. Higginbotham, F. Pianesi, & A. C. Varzi (Eds.), Speaking of Events (pp. 3–47). New York, NY: Oxford University Press.Google Scholar
  138. Pyka, M., & Cheng, S. (2014). Pattern association and consolidation emerges from connectivity properties between cortex and hippocampus. PLoS One, 9, e85016. doi: 10.1371/journal.pone.0085016.CrossRefGoogle Scholar
  139. Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445, 919–921.CrossRefGoogle Scholar
  140. Raffmann, D. (1995). On the Persistence of Phenomenology. In T. Metzinger (Ed.), Conscious Experience (pp. 293–308). Paderborn: Schöningh/Imprint Academic.Google Scholar
  141. Ramadan, W., Eschenko, O., & Sara, S. J. (2009). Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PloS ONE, 4(8). doi: 10.1371/journal.pone.0006697.
  142. Ranganath, C., & Blumenfeld, R. S. (2005). Doubts about double dissociations between short- and long-term memory. Trends in Cognitive Sciences, 9, 374–380. doi: 10.1016/j.tics.2005.06.009.CrossRefGoogle Scholar
  143. Ranganath, C., Cohen, M. X., & Brozinsky, C. J. (2005). Working memory maintenance contributes to long-term memory formation: Neural and behavioral evidence. J Cogn Neurosci, 17, 994–1010. doi: 10.1162/0898929054475118.CrossRefGoogle Scholar
  144. Ranganath, C., & D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31, 865–873. doi: 10.1016/S0896-6273(01)00411-1.CrossRefGoogle Scholar
  145. Ribot, T. (1881). Les maladies de la mémoire. Paris: Germer Baillare.Google Scholar
  146. Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Science, 26, 709–728. discussion 728–77.Google Scholar
  147. Ryan, L., Nadel, L., Keil, K., et al. (2001). Hippocampal complex and retrieval of recent and very remote autobiographical memories: Evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus, 11, 707–714. doi: 10.1002/hipo.1086.CrossRefGoogle Scholar
  148. Ryle, G. (1949). The concept of mind. London: Hutchinson & Company.Google Scholar
  149. Saksida, L. M., Bussey, T. J., Buckmaster, C. A., & Murray, E. A. (2006). No effect of hippocampal lesions on perirhinal cortex-dependent feature-ambiguous visual discriminations. Hippocampus, 16, 421–430. doi: 10.1002/hipo.20170.CrossRefGoogle Scholar
  150. Schacter, D. L. (2012). Constructive memory: Past and future. Dialogues in Clinical Neuroscience, 14, 7–18.Google Scholar
  151. Schacter, D. L. (2002). The seven sins of memory: How the mind forgets and remembers. New York: Houghton Mifflin.Google Scholar
  152. Schacter, D. L., & Dodson, C. S. (2001). Misattribution, false recognition and the sins of memory. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1385–1393. doi: 10.1098/rstb.2001.0938.CrossRefGoogle Scholar
  153. Scoboria, A., Mazzoni, G., Kirsch, I., & Milling, L. S. (2002). Immediate and persisting effects of misleading questions and hypnosis on memory reports. Journal of Experimental Psychology: Applied, 8, 26–32. doi: 10.1037//1076-898X.8.1.26.Google Scholar
  154. Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.CrossRefGoogle Scholar
  155. Shanton, K., & Goldman, A. (2010). Simulation theory. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 527–538. doi: 10.1002/wcs.33.Google Scholar
  156. Sharon, T., Moscovitch, M., & Gilboa, A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences USA, 108, 1146–1151. doi: 10.1073/pnas.1005238108.CrossRefGoogle Scholar
  157. Shrager, Y., Gold, J. J., Hopkins, R. O., & Squire, L. R. (2006). Intact visual perception in memory-impaired patients with medial temporal lobe lesions. Journal of Neuroscience, 26, 2235–2240. doi: 10.1523/JNEUROSCI.4792-05.2006.CrossRefGoogle Scholar
  158. Skaggs, W., McNaughton, B., Wilson, M., & Barnes, C. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6, 149–172. doi: 10.1002/(SICI)1098-1063(1996)6:2%3C149:AID-HIPO6%3E3.0.CO;2-K.
  159. Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873. doi: 10.1126/science.271.5257.1870.CrossRefGoogle Scholar
  160. Skaggs, W. E., McNaughton, B. L., Permenter, M., et al. (2007). EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. Journal of Neurophysiology, 98, 898–910. doi: 10.1152/jn.00401.2007.CrossRefGoogle Scholar
  161. Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5, 169–177.CrossRefGoogle Scholar
  162. Squire, L. R., & Zola-Morgan, S. (1988). Memory: Brain systems and behavior. Trends in Neurosciences, 11, 170–175.CrossRefGoogle Scholar
  163. Steinvorth, S., Levine, B., & Corkin, S. (2005). Medial temporal lobe structures are needed to re-experience remote autobiographical memories: Evidence from H.M. and W.R. Neuropsychologia, 43, 479–496. doi: 10.1016/j.neuropsychologia.2005.01.001.CrossRefGoogle Scholar
  164. Suddendorf, T. (2013). Mental time travel: Continuities and discontinuities. Trends in Cognitive Sciences, 17, 151–152. doi: 10.1016/j.tics.2013.01.011.CrossRefGoogle Scholar
  165. Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic Social and General Psychology Monographs, 123, 133–167.Google Scholar
  166. Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Science, 30, 299–313. doi: 10.1017/S0140525X07001975. discussion 313–51.Google Scholar
  167. Suddendorf, T., & Corballis, M. C. (2008). New evidence for animal foresight? Animal Behaviour, 75, e1–e3. doi: 10.1016/j.anbehav.2008.01.006.CrossRefGoogle Scholar
  168. Suzuki, W. A. (2009). Perception and the medial temporal lobe: Evaluating the current evidence. Neuron, 61, 657–666. doi: 10.1016/j.neuron.2009.02.008.CrossRefGoogle Scholar
  169. Toribio, J. (2007). Nonconceptual content. Philos. Compass, 2, 445–460. doi: 10.1111/j.1747-9991.2007.00075.x.CrossRefGoogle Scholar
  170. Toth, J. P., & Hunt, R. R. (1999). Not one versus many, but zero versus any: Structure and function in the context of the multiple memory systems debate. In J. K. Foster & M. Jelicic (Eds.), Memory: Systems, process, or function? Debates in psychology (pp. 232–272). New York: Oxford University Press.Google Scholar
  171. Trustwell, R. (2011). Events, phrases, and questions. Oxford: Oxford University Press.CrossRefGoogle Scholar
  172. Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon Press.Google Scholar
  173. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–402). New York: Academic Press Inc.Google Scholar
  174. Tulving, E. (1985). Memory and consciousness. Canadian Journal Psychology, 26, 1–26.CrossRefGoogle Scholar
  175. Tulving, E. (1993). What Is episodic memory? Current Directions in Psychological Science, 2, 67–70. doi: 10.1111/1467-8721.ep10770899.CrossRefGoogle Scholar
  176. Tulving, E. (1995). Organization of memory: Quo vadis. In M. Gazzaniga (Ed.), Cognitive neuroscience (pp. 839–847). Cambridge, MA: MIT Press.Google Scholar
  177. Tulving, E., Kapur, S., Craik, F. I., et al. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences USA, 91, 2016–2020.CrossRefGoogle Scholar
  178. Vargha-Khadem, F., Gadian, D., Watkins, K., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–380. doi: 10.1126/science.277.5324.376.
  179. Wallenstein, G. V., Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neurosciences, 21, 317–323.CrossRefGoogle Scholar
  180. Weiler, J. A., Suchan, B., & Daum, I. (2010). Foreseeing the future: Occurrence probability of imagined future events modulates hippocampal activation. Hippocampus, 20, 685–690. doi: 10.1002/hipo.20695.Google Scholar
  181. Weiss, C., Bouwmeester, H., Power, J. M., & Disterhoft, J. F. (1999). Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behavioural Brain Research, 99, 123–132.CrossRefGoogle Scholar
  182. Werning, M. (2003). Ventral versus dorsal pathway: The source of the semantic object/event and the syntactic noun/verb distinction? Behavioral and Brain Science, 26, 299–300. doi: 10.1017/S0140525X03400071.CrossRefGoogle Scholar
  183. Werning, M. (2005). Right and wrong reasons for compositionality. In M. Werning, E. Machery, & G. Schurz (Eds.), The compositionality of meaning and content (Vol. I: Foundational Issues, pp. 285–309). Frankfurt: Ontos Verlag.Google Scholar
  184. Werning, M. (2010). Descartes discarded? Introspective self-awareness and the problems of transparency and compositionality. Consciousness and Cognition, 19, 751–761.CrossRefGoogle Scholar
  185. Werning, M. (2012). Non-symbolic compositional representation and its neuronal foundation: Towards an emulative semantics. In M. Werning, W. Hinzen, & E. Machery (Eds.), The Oxford handbook of compositionality (pp. 633–654). Oxford: Oxford University Press.Google Scholar
  186. Werning, M., Hinzen, W., & Machery, E. (2012). The Oxford handbook of compositionality. Oxford: Oxford University Press.Google Scholar
  187. Wheeler, M. A., Stuss, D. T., & Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. Journal of the International Neuropsychological Society, 1, 525–536.CrossRefGoogle Scholar
  188. Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679. doi: 10.1126/science.8036517.CrossRefGoogle Scholar
  189. Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397, 613–616. doi: 10.1038/17605.CrossRefGoogle Scholar
  190. Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin and Review, 8, 685–690.CrossRefGoogle Scholar
  191. Zola-Morgan, S., Squire, L. R., Amaral, D. G., & Suzuki, Wa. (1989). Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. Journal of Neuroscience, 9, 4355–4370.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Psychology, Mercator Research Group “Structure of Memory”Ruhr University BochumBochumGermany
  2. 2.Department of Philosophy II, Mercator Research Group “Structure of Memory”Ruhr University BochumBochumGermany

Personalised recommendations