, Volume 192, Issue 4, pp 1139–1155 | Cite as

Retrocausality at no extra cost

  • Peter W. EvansEmail author


One obstacle faced by proposals of retrocausal influences in quantum mechanics is the perceived high conceptual cost of making such a proposal. I assemble here a metaphysical picture consistent with the possibility of retrocausality and not precluded by the known physical structure of our reality. This picture employs two relatively well-established positions—the block universe model of time and the interventionist account of causation—and requires the dismantling of our ordinary asymmetric causal intuition and our ordinary intuition about epistemic access to the past. The picture is then built upon an existing model of agent deliberation that permits us to strike a harmony between our causal intuitions and the fixity of the block universe view. I conclude that given the right mix of these reasonable metaphysical and epistemological ingredients there is no conceptual cost to such a retrocausal picture of quantum mechanics.


Retrocausality Temporal symmetry Interventionism   Quantum mechanics Bell’s theorem 



Peter W. Evans wishes to thank Sam Baron, John Cusbert, Matt Farr, Huw Price, Mikey Slezak and two anonymous referees for Synthese for helpful discussions and comments. This research has been supported partly by the Australian Research Council and the Scholarship for Research on Foundations of Quantum Mechanics at the Centre for Time, University of Sydney and partly by the Templeton World Charity Foundation grant: The causal power of information in a quantum world at the University of Queensland.


  1. Argaman, N. (2010). Bell’s theorem and the causal arrow of time. American Journal of Physics, 78, 1007–1013. doi: 10.1119/1.3456564. arXiv:0807.2041 [quant-ph].
  2. Costa de Beauregard, O. (1953). Méchanique quantique. Comptes Rendus de l’Académie des Sciences, T236, 1632–1634.Google Scholar
  3. Costa de Beauregard, O. (1976). Time symmetry and interpretation of quantum mechanics. Foundations of Physics, 6, 539–559. doi: 10.1007/BF00715107.CrossRefGoogle Scholar
  4. Costa de Beauregard, O. (1977). Time symmetry and the Einstein paradox. Il Nuovo Cimento, 42, 41–63. doi: 10.1007/BF02906749.CrossRefGoogle Scholar
  5. Cramer, J. G. (1980). Generalized absorber theory and the Einstein–Podolsky–Rosen paradox. Physical Review D, 22, 362–676. doi: 10.1103/PhysRevD.22.362.CrossRefGoogle Scholar
  6. Cramer, J. G. (1986). The transactional interpretation of quantum mechanics. Reviews of Modern Physics, 58, 647–687. doi: 10.1103/RevModPhys.58.647.CrossRefGoogle Scholar
  7. Dummett, M. (1964). Bringing about the past. The Philosophical Review, 73(3), 338–359.CrossRefGoogle Scholar
  8. Evans, P. W., Price, H., & Wharton, K. B. (2013). New slant on the EPR-Bell experiment. British Journal for the Philosophy of Science, 64, 297–324. doi: 10.1093/bjps/axr052. arXiv:1001.5057v3 [quant-ph].
  9. Frisch, M. (2012). No place for causes? Causal skepticism in physics. The European Journal of Philosophy of Science, 2(3), 313–336. doi: 10.1007/s13194-011-0044-4.CrossRefGoogle Scholar
  10. Frisch, M. (forthcoming). Causes, randomness, and the past hypothesis. In B. Loewer, E. Winsberg, & B. Weslake (Eds.), Time’s arrows and the probability structure of the world. Cambridge, MA: MIT Press.
  11. Hokkyo, N. (1988). Variational formulation of transactional and related interpretations of quantum mechanics. Foundations of Physics Letters, 1, 293–299. doi: 10.1007/BF00690070.CrossRefGoogle Scholar
  12. Maudlin, T. (2002). Quantum non-locality and relativity. Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  13. Miller, D. J. (1996). Realism and time symmetry in quantum mechanics. Physics Letters A, 222, 31–36. doi: 10.1016/0375-9601(96)00620-2.CrossRefGoogle Scholar
  14. Miller, D. J. (1997). Conditional probabilities in quantum mechanics from time-symmetric formulation. Il Nuovo Cimento, 112B, 1577–1592.Google Scholar
  15. Price, H. (1984). The philosophy and physics of affecting the past. Synthese, 61, 299–324. doi: 10.1007/BF00485056.CrossRefGoogle Scholar
  16. Price, H. (1994). A neglected route to realism about quantum mechanics. Mind, 103, 303–336. doi: 10.1093/mind/103.411.303.CrossRefGoogle Scholar
  17. Price, H. (1996). Time’s arrow and Archimedes’ point. New York: Oxford University Press.Google Scholar
  18. Price, H. (1997). Time symmetry in microphysics. Philosophy of science, 64, 235–244.
  19. Price, H. (2001). Backwards causation, hidden variables, and the meaning of completeness. Pramana: Journal of Physics, 56, 199–209. doi: 10.1007/s12043-001-0117-6.CrossRefGoogle Scholar
  20. Price, H. (2007). Causal perspectivalism. In H. Price & R. Corry (Eds.), Causation, physics, and the constitution of reality: Russell’s republic revisited (Chap. 10) (pp. 250–292). Oxford: Oxford University Press.Google Scholar
  21. Price, H. (2008). Toy models for retrocausality. Studies in History and Philosophy of Modern Physics, 39, 752–776. doi: 10.1016/j.shpsb.2008.05.006.CrossRefGoogle Scholar
  22. Price, H. (2012). Does time-symmetry imply retrocausality: How the quantum world says “Maybe”. Studies in History and Philosophy of Modern Physics, 43, 75–83. arXiv:1002.0906 [quant-ph].
  23. Price, H., & Wharton, K. B. (2013). Dispelling the quantum spooks—A clue that Einstein missed? arXiv:1307.7744 [physics.hist-ph].
  24. Quine, W. V. O. (1951). Ontology and ideology. Philosophical Studies, 2, 11–15. doi: 10.1007/BF02198233.CrossRefGoogle Scholar
  25. Rietdijk, C. W. (1978). Proof of a retroactive influence. Foundations of Physics, 8, 615–628. doi: 10.1007/BF00717585.CrossRefGoogle Scholar
  26. Spekkens, R. W. (2007). Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75, 032110. doi: 10.1103/PhysRevA.75.032110.CrossRefGoogle Scholar
  27. Sutherland, R. I. (1983). Bell’s theorem and backwards-in-time causality. International Journal of Theoretical Physics, 22, 377–384. doi: 10.1007/BF02082904.CrossRefGoogle Scholar
  28. Sutherland, R. I. (1998). Density formalism for quantum theory. Foundations of Physics, 28, 1157–1190. doi: 10.1023/A:1018850120826.CrossRefGoogle Scholar
  29. Sutherland, R. I. (2008). Causally symmetric Bohm model. Studies in History and Philosophy of Modern Physics, 39, 782–805. doi: 10.1016/j.shpsb.2008.04.004.CrossRefGoogle Scholar
  30. Wharton, K. B. (2007). Time-symmetric quantum mechanics. Foundations of Physics, 37, 159–168. doi: 10.1007/s10701-006-9089-1.CrossRefGoogle Scholar
  31. Wharton, K. B. (2010). A novel interpretation of the Klein–Gordon equation. Foundations of Physics, 40, 313–332. doi: 10.1007/s10701-009-9398-2.CrossRefGoogle Scholar
  32. Wharton, K. B. (2013a). Lagrangian-only quantum theory. arXiv:1301.7012 [quant-ph].
  33. Wharton, K. B. (2013b). The Universe is not a computer. New Scientist, 217, 30–31. doi: 10.1016/S0262-4079(13)60354-1. arXiv:1211.7081 [quant-ph].
  34. Wharton, K. B., Miller, D. J., & Price, H. (2011). Action duality: A constructive principle for quantum foundations. Symmetry, 3, 524–540. doi: 10.3390/sym3030524. arXiv:1103.2492 [quant-ph].
  35. Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of History and PhilosophyThe University of QueenslandBrisbaneAustralia

Personalised recommendations