Synthese

, Volume 194, Issue 11, pp 4289–4310 | Cite as

On the proper domain of psychological predicates

Article

Abstract

One question of the bounds of cognition is that of which things have it. A scientifically relevant debate on this question must explain the persistent and selective use of psychological predicates to report findings throughout biology: for example, that neurons prefer, plants and fruit flies decide, and bacteria communicate linguistically. This paper argues that these claims should enjoy default literal interpretation, and that these reports of psychological properties in non-humans are as straightforward as they seem. An epistemic consequence is that these findings can contribute directly to understanding the nature of psychological capacities.

Keywords

Cognition Psychological predicates Folk psychology Verbs Psychological explanation Cognitive mechanisms  Metaphor 

Notes

Acknowledgments

I would like to thank participants in the June 2013 “What is Cognition?” workshop at Ruhr Universitat - Bochum, in partciular Colin Allen, Albert Newen, and co-organizers Cameron Buckner and Ellen Fridland, for helpful responses to my initial attempts at working out some of these issues; and to the University of Pittsburgh’s Center for Philosophy of Science, in particular John Norton, Jim Bogen, Mazviita Chirimuuta, and my fellow fellows, for further questions and encouragement. I also thank my colleague Evan Fales for providing examples of verbs that refer to very specific activities in rock-climbing and woodworking. I also am deeply grateful to three (I think) anonymous reviewers for detailed critical comments on a previous draft, which led to enormous improvements and clarifications throughout.

References

  1. Alpi, A., Amrhein, M., Bertl, A., Blatt, M., Blumwald, E., Cervone, F., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Sciences, 12(7), 135–136.Google Scholar
  2. Andrews, K. (2009). Politics or Metaphysics? On attributing psychological properties to animals. Biology and Philosophy, 24(1), 51–63.CrossRefGoogle Scholar
  3. Andrews, K. (2014). Animal cognition. Stanford Encyclopedia of Philosophy (Fall 2014 edition). E. Zalta, ed., http://plato.stanford.edu/archives/fall2014/entries/cognition-animal/.
  4. Barsalou, L. W. (2005). Situated conceptualization. In H. Cohen & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 619–650). St. Louis: Elsevier.CrossRefGoogle Scholar
  5. Bekoff, M., Allen, C., & Burkhardt, G. (2002). The cognitive animal: Empirical and theoretical perspectives on animal cognition. Cambridge, MA: MIT Press.Google Scholar
  6. Ben-Jacob, E., Coffey, D., & Levine, H. (2012). Bacterial survival strategies suggest rethinking cancer cooperativity. Trends in Microbiology, 20(9), 403–410.CrossRefGoogle Scholar
  7. Bennett, M. R., & Hacker, P. M. S. (2003). Philosophical foundations of neuroscience. Malden, MA: Blackwell Publishing Ltd.Google Scholar
  8. Bennett, M., Dennett, D., Hacker, P., & Searle, J. (2007). Neuroscience & philosophy: Brain, mind, & language. New York: Columbia University Press.Google Scholar
  9. Bermudez, J. L. (2003). Thinking without words. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  10. Bertenthal, B. I. (1993). Perception of biomechanical motions by infants: Intrinsic image and knowledge-based constraints. In C. Granrud (Ed.), Carnegie symposium on cognition: Visual perception and cognition in infancy (pp. 175–214). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  11. Bezuidenhout, A. (2001). Metaphor and what is said: A defense of a direct-expression view of metaphor. Midwest Studies in Philosophy, XXV, 156–186.CrossRefGoogle Scholar
  12. Bowerman, M., & Choi, S. (2003). Space under construction: Language-specific spatial categorization in first-language acquisition. In D. Gentner & S. Goldin-Meadow (Eds.), Language in mind: Advances in the study of language and thought (pp. 387–427). Cambridge, MA: MIT Press.Google Scholar
  13. Brenner, E. D., Stahlberg, R., Mancuso, S., Vivanco, J., Baluška, F., & Von Volkenburgh, E. (2006). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Sciences, 11, 413–419.CrossRefGoogle Scholar
  14. Brenner, E. D., Stahlberg, R., Mancuso, S., Baluška, F., & Von Volkenburgh, E. (2007). Reply to Alpi et al.: Plant neurobiology: The gain is more than the name. Trends in Plant Sciences, 12(7), 285–286.CrossRefGoogle Scholar
  15. Brown, S. W. (2008). Polysemy in the mental lexicon. Colorado Research in Linguistics, 21, 1–12.Google Scholar
  16. Brown, S. W., & Palmer, M. (2010). What computers need to know about verbs. In P. Sheu, H. Yu, C. V. Ramamoorthy, A. K. Joshi, & L. A. Zadeh (Eds.), Semantic computing (pp. 13–31). New York: Wiley-IEEE Press.Google Scholar
  17. Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990.CrossRefGoogle Scholar
  18. Calvo, P., & Keijzer, F. (2009). Cognition in plants. In F. Baluška (Ed.), Plant- environment interactions: Signaling and communication in plants (pp. 247–266). Berlin: Springer-Verlag.Google Scholar
  19. Camp, E. (2006). Metaphor in mind: The cognition of metaphor. Philosophy Compass, 1(2), 154–170.CrossRefGoogle Scholar
  20. Carston, R. (2012). Metaphor and the literal/nonliteral distinction. In K. Allan & K. Jaczszolt (Eds.), Cambridge handbook of pragmatics (pp. 469–492). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Cheung, H., Chen, H.-C., & Yeung, W. (2009). Relations between mental verb and false-belief understanding in cantonese-speaking children. Journal of Experimental Child Psychology, 104, 141–155.CrossRefGoogle Scholar
  22. Childers, J. B., & Tomasello, M. (2002). Two-year-olds learn novel nouns, verbs, and conventional actions from massed or distributed exposures. Developmental Psychology, 38(6), 967–978.CrossRefGoogle Scholar
  23. Churchland, P. (1981). Eliminative materialism and the propositional attitudes. The Journal of Philosophy, 78(2), 67–90.Google Scholar
  24. Croft, W. A. (2012). Verbs: Aspect and causal structure. Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Croft, W. A., & Cruse, D. A. (2004). Cognitive linguistics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  26. Crowther, T. (2011). The matter of events. The Review of Metaphysics, 65, 3–39.Google Scholar
  27. DasGupta, S., Ferreira, C., & Miesenböck, G. (2014). FoxP influences the speed and accuracy of a perceptual decision in Drosophila. Science, 344, 901–904.CrossRefGoogle Scholar
  28. Davidson, D. (1975). Thought and talk. In S. Guttenplan (Ed.), Mind and language. New York: Oxford University Press.Google Scholar
  29. Davies, M. (2008). The corpus of contemporary American English: 450 million words, 1990-present. http://corpus.byu.edu/coca/.
  30. Dennett, D. (1981). True believers: The intentional strategy and why it works. In A. F. Heath (Ed.), Scientific explanation: Papers based on Herbert Spencer lectures given in the University of Oxford (pp. 150–167). Oxford: Clarendon Press.Google Scholar
  31. Fellbaum, C. (1990). English verbs as a semantic net. International Journal of Lexicography, 3(4), 278–301.CrossRefGoogle Scholar
  32. Fellbaum, C., & Chaffin, R. (1990). Some principles of organization of verbs in the mental lexicon (pp. 420–427). Program of the 12th Annual Meeting of the Cognitive Science Society.Google Scholar
  33. Fellbaum, C., & Miller, G. A. (1990). Folk psychology or semantic entailment? A reply to Rips and Conrad (1989). Psychological Review, 97(4), 565–570.CrossRefGoogle Scholar
  34. Fiez, J., & Tranel, D. (1997). Standardized stimuli and procedures for investigating the retrieval of lexical and conceptual knowledge for actions. Memory & Cognition, 25(4), 543–569.CrossRefGoogle Scholar
  35. Gentner, D. (1981). Some interesting differences between nouns and verbs. Cognition and Brain Theory, 4(2), 161–178.Google Scholar
  36. Gentner, D. (1982). Why nouns are learned before verbs: Linguistic relativity versus natural partitioning. In S. Kuczaj (Ed.), Language development: language, cognition, and culture (pp. 301–334). Hillsdale, NJ: Erlbaum.Google Scholar
  37. Gentner, D. (2006). Why verbs are hard to learn. In K. Hirsh-Pasek & R. Golinkoff (Eds.), Action meets word: How children learn verbs (pp. 544–564). Oxford: Oxford University Press.CrossRefGoogle Scholar
  38. Gentner, D., & Boroditsky, L. (2001). Individuation, relativity and early word learning. In M. Bowerman & S. Levinson (Eds.), Language acquisition and conceptual development. New York: Cambridge University Press.Google Scholar
  39. Gentner, D., & Boroditsky, L. (2009). Early acquisition of nouns and verbs: Evidence from Nav. In V. C. Mueller Gathercole (Ed.), Routes to language: Essays in honor of Melissa Bowerman (pp. 5–35). New York: Psychology Press.Google Scholar
  40. Gentner, D., & France, I. M. (1988). The verb mutability effect: Studies of the combinatorial semantics of nouns and verbs. In S. L. Small, G. W. Cottrell & M. K. Tanenhaus (Eds.), Lexical ambiguity resolution: Perspective from psycholinguistics, neuropsychology and artificial intelligence (pp. 343–382). San Mateo, CA: Morgan Kaufmann Publishers, Inc.Google Scholar
  41. Gleitman, L. R., Cassidy, K., Papafragou, A., Nappa, R., & Trueswell, J. T. (2005). Hard words. Journal of Language Learning and Development, 1, 23–64.CrossRefGoogle Scholar
  42. Harris, P., Brown, E., Marriott, C., Whittall, S., & Harmer, S. (1991). Monsters, ghosts, and witches: Testing the limits of the fantasy-reality distinction in young children. British Journal of Developmental Psychology, 9, 105–123.Google Scholar
  43. Haspelmath, M. (2012). How to compare major word-classes across the world’s languages. UCLA Working Papers in Linguistics, Theories of Everything, 17(16), 109–130.Google Scholar
  44. Hirsch, E. (1982). The concept of identity. New York: Oxford University Press.Google Scholar
  45. Hirsch, E. (1993). Dividing reality. New York: Oxford University Press.Google Scholar
  46. Hornsby, J. (2012). Actions and activity. Philosophical Issues, 22(1), 233–245.Google Scholar
  47. Horton, M., & Markman, E. (1980). Developmental differences in the acquisition of basic and superordinate categories. Child Development, 51(3), 708–719.CrossRefGoogle Scholar
  48. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.CrossRefGoogle Scholar
  49. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT Press.Google Scholar
  50. Johnson, C. (1997). Metaphor vs. conflation in the acquisition of polysemy: The case of see. In Cultural, psychological, and typological issues in cognitive linguistics (pp. 155–69).Google Scholar
  51. Keeley, B. L. (2004). Anthropomorphism, primatomorphism, mammalomorphism. Philosophy & Biology, 19, 521–540.CrossRefGoogle Scholar
  52. Keller, E. F. (1983). Feeling for the organism: The life and work of Barbara McClintock. New York: W.H. Freeman & Co.Google Scholar
  53. Kemmerer, D. (2014). Word classes in the brain: Implications of linguistic typology for cognitive neuroscience. Cortex, 58, 27–51.CrossRefGoogle Scholar
  54. Kipper, K., Korhonen, A., Ryant, N., & Palmer, M. (2008). A large-scale classification of English verbs. Language Resources and Evaluation Journal, 42(1), 21–40.CrossRefGoogle Scholar
  55. Kucera, H., & Francis, W. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.Google Scholar
  56. Levin, B. (1993). English verb classes and alternations. Chicago: University of Chicago Press.Google Scholar
  57. Levin, B. (2009). Where verb classes come from. Presentation notes for Verb Typologies Revisited, Ghent, Belgium, Feb 5–7, 2009.Google Scholar
  58. Levin, B. (2012). Manner and result: Implications for Argument realization across languages. Presentation notes for Dusseldorf, July 5, 2012.Google Scholar
  59. Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7, 11–29.CrossRefGoogle Scholar
  60. Markman, E. (1985). Why superordinate category terms can be mass nouns. Cognition, 19(1), 31–53.CrossRefGoogle Scholar
  61. Miller, G. A., & Fellbaum, C. (1991). Semantic networks of English. Cognition, 41, 197–229.CrossRefGoogle Scholar
  62. Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  63. Morris, M. W., & Murphy, G. L. (1990). Converging operations on a basic level in event taxonomies. Memory & Cognition, 18, 407–418.CrossRefGoogle Scholar
  64. Murphy, G. L., & Lassaline, M. E. (1997). Hierarchical structure in concepts and the basic level of categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories (pp. 93–132). Hove: Psychology Press.Google Scholar
  65. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.CrossRefGoogle Scholar
  66. ojalehto, B., Waxman, S. R., & Medin, D. L. (2013). Teleological reasoning about nature: Intentional design or relational perspectives? Trends in Cognitive Sciences, 17(4), 166–171.CrossRefGoogle Scholar
  67. Pulman, S. G. (1983). Word meaning and belief. London: Croom Helm.Google Scholar
  68. Rakova, M. (2003). The extent of the literal: Metaphor, polysemy and theories of concepts. Houndmills: Palgrave-MacMillan.CrossRefGoogle Scholar
  69. Rifkin, A. (1985). Evidence for a basic level in event taxonomies. Memory & Cognition, 13(6), 538–556.CrossRefGoogle Scholar
  70. Rips, L. J., & Conrad, F. G. (1989). Folk psychology of mental activities. Psychological Review, 96, 187–207.CrossRefGoogle Scholar
  71. Rips, L. J., & Conrad, F. G. (1990). Parts of activities: Reply to Fellbaum and Miller (1990). Psychological Review, 97(4), 571–575.CrossRefGoogle Scholar
  72. Roediger, III., Henry, L., Dudai, Y., & Fitzpatrick, S. M. (2007). Science of memory: Concepts. Oxford: Oxford University Press.Google Scholar
  73. Rolls, E. T., Browning, A. S., Inoue, K., & Hernadi, I. (2005). Novel visual stimuli activate a population of neurons in primate orbitofrontal cortex. Neurobiology of Learning and Memory, 84, 111–123.CrossRefGoogle Scholar
  74. Rosch, E. (1973). Natural categories. Cognitive Psychology, 4, 328–350.CrossRefGoogle Scholar
  75. Rosch, E. (1975). Cognitive Representations of semantic categories. Journal of Experimental Psychology, 104(3), 192–233.CrossRefGoogle Scholar
  76. Rosch, E., & Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.CrossRefGoogle Scholar
  77. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.CrossRefGoogle Scholar
  78. Schwitzgebel, E. (2012). A dispositional approach to the attitudes: Thinking Outside the belief box. (MS).Google Scholar
  79. Slaney, K., & Maraun, M. (2005). Analogy and metaphor running amok: An examination of the use of explanatory devices in neuroscience. Journal of Theoretical and Philosophical Psychology, 25(2), 153–172.CrossRefGoogle Scholar
  80. Snedeker, J., & Gleitman, L. (2004). Why it is hard to label our concepts. In D. Hall & S. R. Waxman (Eds.), Weaving a lexicon. ambridge, MA: MIT Press.Google Scholar
  81. Sober, E. (2005). Comparative psychology meets evolutionary biology: Morgan’s canon and cladistic parsimony. In L. Datson & G. Mitman (Eds.), Thinking with animals: New perspectives on anthropomorphism (pp. 85–99). New York: Columbia University Press.Google Scholar
  82. Stamenkovic, D. (2011). Verbs and prototype theory: State of the art and possibilities. In L. Subotic (Ed.), English studies today: Views and voices (pp. 175–185). Novi Sad: University of Novi Sad.Google Scholar
  83. Steward, H. (2012). Actions as processes. Philosophical Perspectives, 26(1), 373–388.Google Scholar
  84. Stich, S. (1979). Do Animals have beliefs? Australasian Journal of Philosophy, 57(1), 15–28.CrossRefGoogle Scholar
  85. Talmy, L. (1975). Semantics and syntax of motion. In J. P. Kimball (Ed.), Syntax and Semantics 4 (pp. 181–238). New York: Academic Press.Google Scholar
  86. Tardif, T., Gelman, R., & Xu, F. (1999). Putting the noun bias in context: A comparison of English and Mandarin. Child Development, 70(3), 620–635.CrossRefGoogle Scholar
  87. Tranel, D., Manzel, K., Asp, E., & Kemmerer, D. (2008). Naming dynamic and static actions: Neuropsychological evidence. Journal of Neurophysiology: Paris, 102, 80–94.Google Scholar
  88. Trewavas, A. (2007). Response to Alpi et al.: Plant neurobiology—All metaphors have value. Trends in Plant Science, 12(6), 231–233.CrossRefGoogle Scholar
  89. Wagner, L., & Carey, S. (2003). Individuation of objects and events: A developmental study. Cognition, 90, 163–191.CrossRefGoogle Scholar
  90. Wilson, M. (2006). Wandering significance: An essay on conceptual behavior. New York: Oxford University Press.CrossRefGoogle Scholar
  91. Wimsatt, W. (2006). Reductionism and its heuristics: Making methodological reductionism honest. Synthese, 151, 445–475.CrossRefGoogle Scholar
  92. Wynn, K. (1996). Infants’ individuation and enumeration of actions. Psychological Science, 7(3), 164–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of IowaIowa CityUSA

Personalised recommendations