Synthese

, Volume 192, Issue 10, pp 3153–3177 | Cite as

One world, one beable

Article

Abstract

Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) and classical mechanics in a “quantum” formalism (Koopman–von Neumann theory) and then comparing and contrasting classical and quantum wave functions. I argue that Humeans about laws can treat classical and quantum wave functions on a par and that doing so yields many benefits.

Keywords

Quantum mechanics Hamilton–Jacobi Koopman Humean Nomological Law of nature Classical wavefunction 

References

  1. Albert, D. (1996). Elementary quantum metaphysics. In J. T. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 277–284). Dordrecht: Kluwer.CrossRefGoogle Scholar
  2. Anandan, J., & Brown, H. (1995). On the reality of space–time geometry and the wavefunction. Foundations of Physics, 25(2), 349–360.CrossRefGoogle Scholar
  3. Bell, J. S. (2004). Speakable and unspeakable in quantum mechanics: Collected papers on quantum philosophy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Belot, G. (2012). Quantum states for primitive ontologists. European Journal for Philosophy of Science, 2(1), 67–83.CrossRefGoogle Scholar
  5. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Physical Review, 85(2), 166.CrossRefGoogle Scholar
  6. Bracken, A. J. (2003). Quantum mechanics as an approximation to classical mechanics in Hilbert space. Journal of Physics A, 36, L329.CrossRefGoogle Scholar
  7. Brown, H., Dewdney, C., & Horton, G. (1995). Bohm particles and their detection in the light of neutron interferometry. Foundations of Physics, 25, 329–347.CrossRefGoogle Scholar
  8. Brown, H., Elby, A., & Weingard, R. (1996). Cause and effect in the pilot-wave interpretation of quantum mechanics. In J. T. Cushing, et al. (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 309–319). Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. Brown, H., & Wallace, D. (2005). Solving the measurement problem: De Broglie–Bohm loses out to Everett. Foundations of Physics, 35, 517–540.CrossRefGoogle Scholar
  10. Brumer, P., & Gong, J. (2006). Born rule in quantum and classical mechanics. Physical Review A, 73(5).Google Scholar
  11. Bondar, D., Cabrera, R., Lompay, R., Ivanov, M., & Rabitz, H. (2012). Operational dynamic modeling transcending quantum and classical mechanics. Physical Review Letters, 109(19), 190403.CrossRefGoogle Scholar
  12. Callender, C. (2001). Humean supervenience and rotating homogeneous matter. Mind, 110, 25–44.CrossRefGoogle Scholar
  13. Callender, C., & Weingard, R. (1994). A Bohmian model of quantum cosmology. Philosophy of Science, 1, S228–S237.Google Scholar
  14. Callender, C., & Weingard, R. (1997). Trouble in paradise? Problems for Bohm’s theory. The monist, 80(1), 24–43.Google Scholar
  15. Carroll, J. (2012). Laws of nature. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2012 edition). http://plato.stanford.edu/archives/spr2012/entries/laws-of-nature/.
  16. Cohen, J., & Callender, C. (2009). The better best system theory of lawhood. Philosophical Studies, 145(1), 1–34.CrossRefGoogle Scholar
  17. Deutsch, D. (1996). Comment on lockwood. British Journal for the Philosophy of Science, 47, 222–228.CrossRefGoogle Scholar
  18. Dowker, F., & Henson, J. 2004. Spontaneous collapse models on a lattice. Journal of Statistical Physics, 115, 1327–1339.Google Scholar
  19. Dürr, Detlef, Goldstein, S., & Zanghì, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67, 843–907.CrossRefGoogle Scholar
  20. Dürr, D., Goldstein, S., & Zanghì, N. (1997). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne, & J. Stachel (Eds.), Experimental metaphysics—quantum mechanical studies for Abner Shimony; Boston studies in the philosophy of science 193 (pp. 25–38). Boston: Kluwer Academic Publishers.Google Scholar
  21. Esfeld, M., Lazarovici, D., Hubert, M., & Dürr, D. (2013). The ontology of Bohmian mechanics. The British Journal for the Philosophy of Science.Google Scholar
  22. Everett, H. (1957). The ‘relative state’ formulation of quantum mechanics. Review of Modern Physics, 29, 454–462.CrossRefGoogle Scholar
  23. Goldstein, S., & Teufel, S. (2001). Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity. In C. Callender & S. Teufel (Eds.), Physics meets philosophy at the Planck scale (pp. 275–289). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Goldstein, S., & Zanghì, N. (2013). Reality and the role of the wave function in quantum theory. In D. Albert & A. Ney (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 91–109). Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Groenewold, H. (1946). On the principles of elementary quantum mechanics. Physica, 12, 405–460.CrossRefGoogle Scholar
  26. Hall, N. Humean reductionism about laws of nature. Unpublished MS. http://philpapers.org/rec/HALHRA.
  27. Hardy, L. (2012). Are quantum states real? arxiv.org/pdf/1205.1439.
  28. Harrigan, R., & Spekkens, (2010). Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics, 40, 125.CrossRefGoogle Scholar
  29. Holland, P. R. (1993). The quantum theory of motion. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Howard, D. (1990). ‘Nicht Sein Kann Was Nicht Sein Darf’, or the prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In A. I. Miller (Ed.), Sixty-two years of uncertainty. New York: Plenum Press.Google Scholar
  31. Huggett, N. (2006). The regularity account of relational spacetime. Mind, 115, 41–73.CrossRefGoogle Scholar
  32. Jauslin, H. R., & Sugny, D. (2009). Dynamics of mixed classical-quantum systems, geometric quantization and coherent states (Review Vol.). Lecture Note Series. IMS, NUS, Singapore.Google Scholar
  33. Koopman, B. O. (1931). Hamiltonian systems and transformations in Hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 17(5), 315–318.CrossRefGoogle Scholar
  34. Leifer, M. (2011) Can the quantum state be interpreted statistically? Web log post. http://mattleifer.info/2011/11/20/can-the-quantum-state-be-interpreted-statistically/.
  35. Lewis, D. (1994). Humean supervenience debugged. Mind, 103(412), 473–489.CrossRefGoogle Scholar
  36. Lewis, P. (2007a). Empty waves in Bohmian quantum mechanics. British Journal for the Philosophy of Science, 58(4), 787–803.CrossRefGoogle Scholar
  37. Lewis, P. (2007b). How Bohm’s theory solves the measurement problem. Philosophy of Science, 74, 749–760.Google Scholar
  38. Loewer, B. (1996). Humean supervenience. Philosophical Topics, 24, 101–127.CrossRefGoogle Scholar
  39. Maudlin, T. (2013). The nature of the quantum state. In A. Ney & D. Albert (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 126–153). Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Mauro, D. (2002). Topics in Koopman–von Neumann theory. PhD thesis, Università degli Studi di Trieste. arXiv:quant-ph/0301172 [quant-ph].
  41. Miller, E. (2013). Quantum entanglement, bohmian mechanics, and humean supervenience. Australasian Journal of Philosophy, 92, 1–17.Google Scholar
  42. Ney, A., & Albert, D. (2013). The wave function: Essays on the metaphysics of quantum mechanics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  43. Norsen, T. (2010). The theory of exclusively local beables. Foundations of Physics, 40, 1858.CrossRefGoogle Scholar
  44. Poirier, W. (2010). Bohmian mechanics without pilot waves. In B. Poirier (Eds.), Dynamics of molecular systems, from quantum to classical dynamics. Chemical Physics, 370(1–3), 4–14.Google Scholar
  45. Pusey, M., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8, 475–478.CrossRefGoogle Scholar
  46. Rosen, N. (1964). The relation between classical and quantum mechanics. American Journal of Physics, 32, 597–600.CrossRefGoogle Scholar
  47. Schiller, R. (1962). Quasi-classical theory of the non-spinning electron. Physical Review, 125, 1100–1108.CrossRefGoogle Scholar
  48. Schleich, W. P., Greenberger, D. M., Kobe, D. H., & Scully, M. O. (2013). Schrödinger equation revisited. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5374–5379.CrossRefGoogle Scholar
  49. Smolin, L. (2013). Time reborn. Boston: Houghton Mifflin Harcourt.Google Scholar
  50. Squires, E. (1994). Some comments on the de Broglie–Bohm picture by an admiring spectator. In A. van der Merwe & A. Garuccio (Eds.), Waves and particles in light and matter. New York: Plenum.Google Scholar
  51. Valentini, A. (2012). De Broglie–Bohm pilot-wave theory: Many worlds in denial? In S. W. Saunders, et al. (Eds.), Many worlds? Everett, quantum theory and reality (pp. 476–509). Oxford: Oxford University Press.Google Scholar
  52. von Neumann, J. (1932). Zur Operatorenmethode In Der Klassischen Mechanik. Annals of Mathematics, 33(3), 587–642.CrossRefGoogle Scholar
  53. Wallace, D. (2008). Philosophy of Quantum Mechanics. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics. Aldershot: Ashgate Press.Google Scholar
  54. Zeh, H. D. (1999). Why Bohm’s quantum theory? Foundations of Physics Letters, 12, 197–200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUCSDLa JollaUSA

Personalised recommendations