, Volume 192, Issue 3, pp 603–633 | Cite as

Constructive belief reports

  • Bartosz WięckowskiEmail author


The paper develops a proof-theoretic semantics for belief reports by extending the constructive type-theoretical formalism presented in Więckowski (Stud Log 100:815–853, 2012) with a specific kind of set-forming operator suited for the representation of belief attitudes. The extended formalism allows us to interpret constructions which involve, e.g., iteration of belief, quantifying into belief contexts, and anaphora in belief reports. Moreover, constructive solutions to canonical instances of the problem of hyperintensionality are suggested. The paper includes a discussion of Ranta’s (Type-theoretical grammar, 1994) constructive account of belief reports.


Belief reports Constructive type theory Hyperintensionality Proof-theoretic semantics Propositional attitudes Type-theoretical semantics 



I have presented parts of this paper at the 8th Scandinavian Logic Symposium at Roskilde University in August 2012, at a Linguistics Colloquium at Goethe University Frankfurt in May 2013, and at the Congress on Logic and Philosophy of Science (CLPS13) at Ghent University in September 2013. I would like to thank the participants at these occasions for their feedback. I am indebted to Nissim Francez, Bjørn Jespersen, and Thomas Ede Zimmermann for very helpful discussions on intensional issues. This paper also greatly benefited from incisive comments by several anonymous referees for Synthese. Support by the Deutsche Forschungsgemeinschaft (DFG grant WI 3456/2-1) is gratefully acknowledged.


  1. Cresswell, M. J. (1975). Hyperintensional logic. Studia Logica, 34(1), 25–38.CrossRefGoogle Scholar
  2. Duží, M., Jespersen, B., & Materna, P. (2010). Procedural semantics for hyperintensional logic. foundations and applications of transparent intensional logic. Dordrecht: Springer.Google Scholar
  3. Fox, C., & Lappin, S. (2005). Foundations of intensional semantics. Oxford: Blackwell.CrossRefGoogle Scholar
  4. Fox, C., Lappin, S., & Pollard, C. (2002). A higher-order fine-grained logic for intensional semantics. In G. Alberti, K. Balogh, & P. Dekker (Eds.), Proceedings of the seventh symposium for logic and language (pp. 37–46). Hungary: University of Pecs.Google Scholar
  5. Francez, N., & Dyckhoff, R. (2010). Proof-theoretic semantics for a natural language fragment. Linguistics and Philosophy, 33(6), 447–477.CrossRefGoogle Scholar
  6. Francez, N., Dyckhoff, R., & Ben-Avi, G. (2010). Proof-theoretic semantics for subsentential phrases. Studia Logica, 94(3), 381–401.CrossRefGoogle Scholar
  7. Kripke, S. (1979). A puzzle about belief. In A. Margalit (Ed.), Meaning and Use. Dordrecht: Reidel.Google Scholar
  8. Luo, Z. (2012). Formal semantics in modern type theories with coercive subtyping. Linguistics and Philosophy, 35(6), 491–513.CrossRefGoogle Scholar
  9. Martin-Löf, P. (1984). Intuitionistic type theory. Naples: Bibliopolis.Google Scholar
  10. Martin-Löf, P. (1987). Truth of a proposition, evidence of a judgement, validity of a proof. Synthese, 73(3), 407–420.CrossRefGoogle Scholar
  11. Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal of Philosophical Logic, 1(1), 11–60.Google Scholar
  12. Martin-Löf, P. (1998). An intuitionistic theory of types. In G. Sambin & J. M. Smith (Eds.), Twenty-five years of constructive type theory (pp. 127–172). Oxford: Clarendon Press.Google Scholar
  13. Martin-Löf, P. (1998). Truth and knowability: on the principles \(C\) and \(K\) of Michael Dummett. In H. G. Dales & G. Oliveri (Eds.), Truth in mathematics (pp. 105–114). Oxford: Clarendon Press.Google Scholar
  14. Muskens, R. (2005). Sense and the computation of reference. Linguistics and Philosophy, 28(4), 473–504.CrossRefGoogle Scholar
  15. Nordström, B., Petersson, K., & Smith, J. M. (1990). Programming in Martin-Löf’s type theory. Oxford: Clarendon Press.Google Scholar
  16. Pollard, C. (2008). Hyperintensions. Journal of Logic and Computation, 18(2), 257–282.CrossRefGoogle Scholar
  17. Ranta, A. (1994). Type-theoretical grammar. Oxford: Clarendon Press.Google Scholar
  18. Saul, J. (2007). Simple sentences, substitution, and intuitions. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Schroeder-Heister, P. (2012). Proof-theoretic semantics. In Zalta, E. (ed.) Stanford Encyclopedia of Philosophy. Stanford:
  20. Sørensen, M. H., & Urzyczyn, P. (2006). Lecture notes on the Curry-Howard isomorphism. Amsterdam: Elsevier.Google Scholar
  21. Sundholm, G. (1994). Proof-theoretical semantics and Fregean identity criteria for propositions. The Monist, 77(3), 294–314.CrossRefGoogle Scholar
  22. Thomason, R. H. (1980). A model theory for propositional attitudes. Linguistics and Philosophy, 4(1), 47–70.CrossRefGoogle Scholar
  23. Troelstra, A. S., & Schwichtenberg, H. (2000). Basic proof theory (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  24. Troelstra, A. S., & van Dalen, D. (1988). Constructivism in mathematics. an introduction (Vol. 1). North-Holland: Elsevier.Google Scholar
  25. Więckowski, B. (2008). Substitution puzzles and substitutional semantics. In: Grønn, A. (ed) Proceedings of Sinn und Bedeutung 12. Oslo: ILOS, 645–662.Google Scholar
  26. Więckowski, B. (2010). Associative substitutional semantics and quantified modal logic. Studia Logica, 94(1), 105–138.CrossRefGoogle Scholar
  27. Więckowski, B. (2011). Rules for subatomic derivation. The Review of Symbolic Logic, 4(2), 219–236.CrossRefGoogle Scholar
  28. Więckowski, B. (2012). A constructive type-theoretical formalism for the interpretation of subatomically sensitive natural language constructions. Studia Logica, 100(4), 815–853. Special issue on Logic and Natural Language edited by N. Francez and I. Pratt-Hartmann.CrossRefGoogle Scholar
  29. Więckowski, B. Refinements of subatomic natural deduction. Journal of Logic and Computation, accepted.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut für PhilosophieGoethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations