, Volume 191, Issue 16, pp 3897–3917 | Cite as

Philosophical perspectives on ad hoc hypotheses and the Higgs mechanism

  • Simon Friederich
  • Robert Harlander
  • Koray Karaca


We examine physicists’ charge of ad hocness against the Higgs mechanism in the standard model of elementary particle physics. We argue that even though this charge never rested on a clear-cut and well-entrenched definition of “ad hoc”, it is based on conceptual and methodological assumptions and principles that are well-founded elements of the scientific practice of high-energy particle physics. We further evaluate the implications of the recent discovery of a Higgs-like particle at the CERN’s Large Hadron Collider for the charge of ad hocness against the Higgs mechanism.


Ad hoc hypothesis Higgs mechanism Particle physics Spontaneous symmetry braking Fine-tuning Naturalness 



This research is part of the project “An Ontological and Epistemological Analysis of the Higgs-mechanism,” funded by the Deutsche Forschungsgemeinschaft (DFG, contract HA 2990/4-1), within the research collaboration “The Epistemology of the Large Hadron Collider (LHC)” at the University of Wuppertal: The authors would like to thank two anonymous referees, as well as audiences at conferences and seminars in Ankara, Dresden, Tel Aviv and Wuppertal, for thoughtful comments and suggestions.


  1. ATLAS Collaboration. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716, 1–29.Google Scholar
  2. ATLAS Collaboration. (2013). Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Physics Letters B, 726, 120–144.Google Scholar
  3. Callaway, D. J. E. (1988). Triviality pursuit: Can elementary scalar particles exist? Physics Reports, 167, 241–320.CrossRefGoogle Scholar
  4. Cho, A. (2007). Physicists’ nightmare scenario: The Higgs and nothing else. Science, 315, 1657–1658.CrossRefGoogle Scholar
  5. CMS Collaboration. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716, 30–61.Google Scholar
  6. CMS Collaboration. (2013). Properties of the observed Higgs-like resonance using the diphoton channel. CERN report number: CMS-PAS-HIG-13-016.Google Scholar
  7. Donoghue, J. F. (2007). The fine-tuning problems of particle physics and anthropic mechanisms. In B. Carr (Ed.), Universe or multiverse (pp. 231–246). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Elitzur, S. (1975). Impossibility of spontaneously breaking local symmetries. Physical Review D, 12, 3978–3982.CrossRefGoogle Scholar
  9. Farhi, E., & Jackiw, R. (1982). Dynamical gauge symmetry breaking; a collection of reprints. Singapore: World Scientific.CrossRefGoogle Scholar
  10. Feng, J. L. (2013) Naturalness and the status of supersymmetry. Forthcoming in annual review of nuclear and particle science.
  11. Friederich, S. (2013). Gauge symmetry breaking in gauge theories—In search of clarification. European Journal for Philosophy of Science, 3, 157–182.Google Scholar
  12. Giudice, G. F. (2010). A zeptospace odyssey—A journey into the physics of the LHC. New York: Oxford University Press.Google Scholar
  13. Glashow, S. L. (1961). Partial-symmetries of weak interactions. Nuclear Physics, 22, 579–588.Google Scholar
  14. Grünbaum, A. (1976). Ad hoc auxiliary hypotheses and falsificationism. British Journal for the Philosophy of Science, 27, 329–362.CrossRefGoogle Scholar
  15. Healey, R. (2007). Gauging what’s real: The conceptual foundations of contemporary gauge theories. Oxford: Oxford University Press.CrossRefGoogle Scholar
  16. Hunt, J. C. (2012). On ad hoc hypotheses. Philosophy of Science, 79, 1–14.CrossRefGoogle Scholar
  17. Jackiw, R. (1998). Field theory: Why have some physicists abandoned it? Proceedings of the National Academy of Sciences USA, 95, 12776–12778.CrossRefGoogle Scholar
  18. Karaca, K. (2010). Historical and conceptual foundations of the higher dimensional unification program in physics. Dissertation, submitted in May 2010 at Indiana University.Google Scholar
  19. Karaca, K. (2013). The construction of the Higgs mechanism and the emergence of the electroweak theory. Studies in History and Philosophy of Modern Physics, 44, 1–16.CrossRefGoogle Scholar
  20. Krämer, M. (2013). “The landscape of new physics”, blog entry. Retrieved on February 17, 2014, from
  21. Leplin, J. (1975). The concept of an ad hoc hypothesis. Studies in History and Philosophy of Science, 5, 309–345.CrossRefGoogle Scholar
  22. LEP Working Group for Higgs Boson Searches. (2003). Search for the standard model Higgs boson at LEP. Physics Letters B, 565, 61–75.Google Scholar
  23. LHC Higgs Cross Section Working Group Collaboration. (2011). Handbook of LHC Higgs cross sections: 1. Inclusive observables.
  24. Moriyasu, K. (1983). An elementary primer for gauge theory. Singapore: World Scientific.CrossRefGoogle Scholar
  25. Morrison, M. (2003). Spontaneous symmetry breaking: theoretical arguments and philosophical problems. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections (pp. 347–363). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Peskin, M. E. (2012). Theoretical summary lecture for Higgs hunting 2012. SLAC-PUB-15224.
  27. Popper, K. (1959). The logic of scientific discovery. London: Hutchinson.Google Scholar
  28. Popper, K. (1974). Replies to my critics. In P. A. Schilpp (Ed.), The philosophy of Karl Popper (pp. 961–1197). Library of Living Philosophers, Open Court, La Salle.Google Scholar
  29. Quigg, C. (2007). Spontaneous symmetry breaking as a basis of particle mass. Reports on Progress in Physics, 70, 1019–1053.Google Scholar
  30. Ross, D. A., & Veltman, M. (1975). Neutral currents and the Higgs mechanism. Nuclear Physics B, 95, 135–147.CrossRefGoogle Scholar
  31. Schaffner, K. F. (1974). Einstein versus Lorentz: Research programmes and the logic of comparative theory evaluation. The British Journal for the Philosophy of Science, 25, 45–78.CrossRefGoogle Scholar
  32. Schumm, B. A. (2004). Deep down things: The breathtaking beauty of particle physics. Baltimore, Maryland: John Hopkins University Press.Google Scholar
  33. Slavnov, A. A. (1979). Application of path integrals to non-perturbative study of massive Yang-Mills theory. In S. Albeverio, Ph. Combe, R. Høegh-Krohn, G. Rideau, M. Siruge-Collin, M. Siruge, & R. Stora (Eds.), Feynman path integrals (pp. 289–303). Lecture Notes in Physics 106, Springer, Berlin.Google Scholar
  34. Smeenk, C. (2006). The elusive Higgs mechanism. Philosophy of Science, 73, 487–499.Google Scholar
  35. Smolin, L. (1997). The life of the cosmos. Oxford: Oxford University Press.Google Scholar
  36. Susskind, L. (1979). Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Physical Review D, 20, 2619–2625.CrossRefGoogle Scholar
  37. ‘t Hooft, G. (1971). Renormalizable Lagrangians for massive Yang-Mills fields. Nuclear Physics B, 35, 167–188.CrossRefGoogle Scholar
  38. Weinberg, S. (1967). A model of leptons. Physical Review Letters, 19, 1264–1266.CrossRefGoogle Scholar
  39. Wetterich, C. (2012). Where to look for solving the gauge hierarchy problem? Physics Letters B, 718, 573–576.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Simon Friederich
    • 1
  • Robert Harlander
    • 2
  • Koray Karaca
    • 3
  1. 1.Philosophisches SeminarUniversität GöttingenGöttingenGermany
  2. 2.Theoretische TeilchenphysikFachbereich C, Universität WuppertalWuppertalGermany
  3. 3.Interdisciplinary Centre for Science and Technology Studies (IZWT)University of WuppertalWuppertalGermany

Personalised recommendations