, Volume 191, Issue 10, pp 2281–2299 | Cite as

Towards transfinite type theory: rereading Tarski’s Wahrheitsbegriff

  • Iris Loeb


In his famous paper Der Wahrheitsbegriff in den formalisierten Sprachen (Polish edition: Nakładem/Prace Towarzystwa Naukowego Warszawskiego, wydzial, III, 1933), Alfred Tarski constructs a materially adequate and formally correct definition of the term “true sentence” for certain kinds of formalised languages. In the case of other formalised languages, he shows that such a construction is impossible but that the term “true sentence” can nevertheless be consistently postulated. In the Postscript that Tarski added to a later version of this paper (Studia Philosophica, 1, 1935), he does not explicitly include limits for the kinds of language for which such a construction is possible. This absence of such limits has been interpreted as an implied claim that such a definition of the term “true sentence” can be constructed for every language. This has far-reaching consequences, not least for the widely held belief that Tarski changed from an universalistic to an anti-universalistic standpoint. We will claim that the consequence of anti-universalism is unwarranted, given that it can be argued that the Postscript is not in conflict with the existence of limits outside of which a definition of “true sentence” cannot be constructed. Moreover, by a discussion of transfinite type theory, we will also be able to accommodate other of the changes made in Tarski’s Postscript within a type-theoretical framework. The awareness of transfinite type theory afforded by this discussion will lead, in turn, to an account of Tarski’s Postscript that shows a gradual change in his logical work, rather than any of the more radical transitions which the Postscript has been claimed to reflect.


Tarski Truth Type theory Universalism 



I would like to thank Monika Gruber for discussions on the Wahrheitsbegriff that have been very helpful to me, in particular because in general we seem to disagree. Furthermore I like to thank the participants of the “Tarski Seminar”, which took place in fall term 2011 and made reading Tarski’s paper a very pleasant activity. Arianna Betti, Hein van den Berg, Lieven Decock, Wim de Jong, Jeroen de Ridder, Stefan Roski and Jeroen Smid have read an earlier version of this paper and given me valuable feedback. I thank the anonymous referees for their suggestions. Work on this paper was made possible by ERC Starting Grant TRANH 203194.


  1. Bellotti, L., 2003: Tarski on logical notions. Synthese, 135, 401–413. doi: 10.1023/A:1023590504284.
  2. Betti, A. (2008). Polish axiomatics and its truth: On Tarski’s Leśniewskian background and the Adjukiewicz connection. In D. Patterson (Ed.), New essays on Tarski and philosophy (pp. 44–71). Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Carnap, R. (1929). Abriß der Logistik. Vienna: Springer.Google Scholar
  4. Carnap, R. (1934). Logische Syntax der Sprache. Vienna: Springer (translated into English as Carnap 1937).Google Scholar
  5. Carnap, R. (1937). The logical syntax of language. London: Kegan Paul, Trench, Trubner.Google Scholar
  6. Church, A. (1976). Comparison of Russell’s resolution of the semantical antinomies with that of Tarski. The Journal of Symbolic Logic, 41(4), 747–760.CrossRefGoogle Scholar
  7. Chwistek, L. (1924). The theory of constructive types (Principles of logic and mathematics), part I. Annales de la Société Polonaise de Mathématique, II, 9–48.Google Scholar
  8. Coffa, A. (1987). Carnap, Tarski and the search for truth. Noûs, 21(4), 547–572.CrossRefGoogle Scholar
  9. Creath, R. (1999). Carnap’s move to semantics: Gains and losses. In J. Wolenski & E. Khler (Eds.) Alfred Tarski and the Vienna circle: Austro- Polish connections in logical empiricism (Vol. 6, pp. 65–76). The Netherlands: Springer.Google Scholar
  10. de Rouilhan, P. (1998). Tarski et l’université de la logique: Remarques sur le post-scriptum au \(\langle \langle \) wahrheitsbegriff\(\rangle \rangle \). In F. Nef & D. Vernant, (Eds.) Le formalisme en question: Le tournant des anneés 30 (pp. 85–102). Paris: Vrin, Problèmes et controverses.Google Scholar
  11. Feferman, S. (2002). The development of programs for the foundations of mathematics in the first third of the 20th century (Unpublished).Google Scholar
  12. Feferman, S. (2004). Typical ambiguity: Trying to have your cake and eat it too. In G. Link (Ed.), One hundred years of Russell’s paradox: Mathematics, logic, philosophy (pp. 135–151). Berlin: Walter de Gruyter.Google Scholar
  13. Feferman, S. (2008). Tarski’s conceptual analysis of semantical notions. In D. Patterson (Ed.), New essays on Tarski and philosophy (pp. 72–93). Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Field, H. (2008). Saving truth from paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
  15. Fraenkel, A. (1928). Einleitung in die Mengenlehre (3rd ed.). Berlin: Springer.CrossRefGoogle Scholar
  16. Frost-Arnold, G. (2004). Was Tarski’s theory of truth motivated by physicalism? History and Philosophy of Logic, 25(4), 265–280.CrossRefGoogle Scholar
  17. Givant, S. R., & Mackenzie, R. (Eds.). (1986). Alfred Tarski: Collected papers (Vol. 2). Basel: Birkhäuser.Google Scholar
  18. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte fur Mathematik und Physik, xxxviii, 173–198.Google Scholar
  19. Gödel, K. (1933). The present situation in the foundations of mathematics. Collected Works, 3, 45–53.Google Scholar
  20. Gómez-Torrente, M. (2001). Notas sobre el “Wahrheitsbegriff” II. Análisis Filosófico, XXI, 149–185.Google Scholar
  21. Gruber, M. (2012). Tarski, blow by blow. Ph.D. thesis, University of Salzburg.Google Scholar
  22. Hilbert, D. (1926). Über das Unendliche. Mathematische Annalen, 95(1), 161–190.CrossRefGoogle Scholar
  23. Hintikka, J. (1988). On the development of the model-theoretic viewpoint in logical theory. Synthese, 77, 1–36.CrossRefGoogle Scholar
  24. Leśniewski, S. (1929). Grundzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematica, xiv, 1–81.Google Scholar
  25. Linnebo, Ø., & Rayo, A. (2012). Hierarchies ontological and ideological. Mind, 121(482), 269–308.CrossRefGoogle Scholar
  26. Mancosu, P. (2010). Fixed- versus variable-domain interpretations of Tarski’s account of logical consequence. Philosophy Compass, 5(9), 745–759.CrossRefGoogle Scholar
  27. Patterson, D. (2012). Alfred Tarski: Philosophy of language and logic. History of analytic philosophy. Basingstoke: Palgrave Macmillan (version of July 18, 2011).Google Scholar
  28. Proops, I. (2007). Russell and the universalist conception of logic. Noûs, 41(1), 1–32.CrossRefGoogle Scholar
  29. Quine, W. V. (1938). On the theory of types. The Journal of Symbolic Logic, 3(4), 125–139.CrossRefGoogle Scholar
  30. Rodríguez-Consuegra, F. (2005). Tarski’s intuitive notion of set. In G. Sica (Ed.), Essays on the foundations of mathematics and logic (pp. 227–266). Monza: Polimetrica International Scientific.Google Scholar
  31. Russell, B. (1908). Mathematical logic as based on the theorie of types. American Journal of Mathematics, 30(3), 222–262.CrossRefGoogle Scholar
  32. Skolem, T. (1929) Über einige Grundlagenfragen der Mathematik. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Mat. Nat. Klasse, 4, 227–273.Google Scholar
  33. Sundholm, G. (2003). Tarski and Leśniewski on languages with meaning versus languages without use. In J. Hintikka, T. Czarnecki, K. Kijania-Placek, T. Placek, & A. Rojczczak (Eds.), Search of the Polish tradition-essays in honor of Jan Woleński on the occasion of his 60th birthday (pp. 109–127). Dordrecht: Kluwer Academic.Google Scholar
  34. Tarski, A. (1933). Pojȩcie prawdy w jȩzykach nauk dedukcyjnych. Nakładem/Prace Towarzystwa Naukowego Warszawskiego, wydzial, (Vol. III), p. 34.Google Scholar
  35. Tarski, A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405.Google Scholar
  36. Tarski, A. (1994). The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4, 341–376. reprinted in (Givant and Mackenzie1986).CrossRefGoogle Scholar
  37. Tarski, A. (1956). The concept of truth in formalized languages. Logic, semantics, metamathematics. Oxford: Oxford University Press.Google Scholar
  38. Tarski, A., & Corcoran, J. (1986). What are logical notions? History and Philosophy of Logic, 7(2), 143–154.CrossRefGoogle Scholar
  39. Van Heijenoort, J. (1967). Logic as language and logic as calculus. Synthese, 17(1), 324–330.CrossRefGoogle Scholar
  40. Whitehead, A., & Russell, B. (1910). Principia mathematica (Vol. 1). Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesVU UniversityAmsterdamThe Netherlands

Personalised recommendations