Synthese

, Volume 192, Issue 3, pp 535–562 | Cite as

Agnostic hyperintensional semantics

Article

Abstract

A hyperintensional semantics for natural language is proposed which is agnostic about the question of whether propositions are sets of worlds or worlds are (maximal consistent) sets of propositions. Montague’s theory of intensional senses is replaced by a weaker theory, written in standard classical higher-order logic, of fine-grained senses which are in a many-to-one correspondence with intensions; Montague’s theory can then be recovered from the proposed theory by identifying the type of propositions with the type of sets of worlds and adding an axiom to the effect that each world is the set of propositions which are true there. Senses are compositionally assigned to linguistic expressions by a categorial grammar with only two rule schemas, based on the implicative fragment of intuitionistic linear propositional logic, and a fully explicit grammar fragment is provided that illustrates the compositional assignment of sense to a variety of constructions, including dummy-subject constructions, infinitive complements, predicative adjectives and nominals, raising to subject, ‘tough-movement’, and quantifier scope ambiguities. Notably, the grammar and the derivations that it licenses never make reference to either worlds or to the extensions of senses.

Keywords

Hyperintension Proposition World Higher order logic Linear logic Categorial grammar 

References

  1. Bolzano, B. (1972). Theory of science. Translation of Wissenschaftslehre, 1837, edited and translated by R. George. Berkeley and Los Angeles, CA: University of California Press.Google Scholar
  2. Bolzano, B. (1973). Theory of science. Translation of Wissenschaftslehre, 1837, edited by J. Berg and translated by B. Terrell. Dordrecht: D. Reidel.Google Scholar
  3. Carnap, R. (1947). Meaning and necessity. Chicago: University of Chicago Press.Google Scholar
  4. Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5, 56–68.CrossRefGoogle Scholar
  5. Cresswell, M. (1975). Hyperintensional logic. Studia Logica, 34, 25–38.CrossRefGoogle Scholar
  6. Cresswell, M. (1985). Structured meanings. Cambridge, MA: MIT Press.Google Scholar
  7. Curry, H. (1961). Some logical aspects of grammatical structure. In R. Jakobson (Ed.), Structure of language in its mathematicalaspects (pp. 56–68). Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  8. Dowty, D. (1979). Word meaning and Montague grammar. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  9. Dowty, D., Wall, R., & Peters, S. (1981). Introduction to Montague semantics. Dordrecht: D. Reidel.Google Scholar
  10. Duži, M., Jespersen, B., & Materna, A. (2010). Procedural semantics for hyperintensional logic. Berlin: Springer.Google Scholar
  11. Frege, G. (1980). On sense and reference. Translation of Über Sinn und Bedeutung, 1892. In P. Geach & M. Black (Eds.), Translations from the philosophical writings of Gottlob Frege (3rd ed.). Oxford: Blackwell.Google Scholar
  12. Gallin, D. (1975). Intensional and higher order modal logic. Amsterdam: North-Holland.Google Scholar
  13. Heim, I. (1982). The semantics of definite and indefinite noun phrases. Ph.D. Dissertation, University of Massachusetts, Amherst, MA.Google Scholar
  14. Heim, I., & Kratzer, A. (1998). Semantics in generative grammar. Oxford: Blackwell.Google Scholar
  15. Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15, 81–91.CrossRefGoogle Scholar
  16. Kamp, H. (1981). A theory of truth and semantic representation. In J. Groenendijk, T. Janssen, & M. Stokhof (Eds.), Formal methods in the study of language (Part 1, pp. 277–322). Amsterdam: Mathematical Centre.Google Scholar
  17. Kaplan, D. (1978). On the logic of demonstratives. Journal of Philosophical Logic, 8, 81–98.Google Scholar
  18. Karttunen, L. (1976). Discourse referents. In J. McCawley (Ed.), Notes from the linguistic underground. Syntax and semantics (Vol. 7, pp. 363–385). New York: Academic Press.Google Scholar
  19. Karttunen, L. (1977). Syntax and semantics of questions. Linguistics and Philosophy, 1, 3–44.CrossRefGoogle Scholar
  20. King, J. (1996). Structured propositions and sentence structure. Journal of Philosophical Logic, 25, 495–521.CrossRefGoogle Scholar
  21. King, J. (2007). The nature and structure of content. Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Kripke, S. (1963). Semantic analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9, 67–96.CrossRefGoogle Scholar
  23. Kripke, S. (1980). Naming and necessity. Oxford: Blackwell.Google Scholar
  24. Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.CrossRefGoogle Scholar
  25. Lambek, J., & Scott, P. (1986). Introduction to higher-order categorical logic. Cambridge: Cambridge University Press.Google Scholar
  26. Lewis, C. I. (1923). Facts, systems, and the unity of the world. Journal of Philosophy, 20, 141–151.CrossRefGoogle Scholar
  27. Lewis, D. (1970). General semantics. Synthese, 22, 18–67.CrossRefGoogle Scholar
  28. Martin, S. (2013). The dynamics of sense and implicature. Ph.D. Dissertation, Ohio State University, Columbus, OH.Google Scholar
  29. Mihaliček, V. (2012). Serbo-Croatian word order: A logical approach. Ph.D. Dissertation, Ohio State University, Columbus, OH.Google Scholar
  30. Montague, R. (1974). Pragmatics and intensional logic. In R. Thomason (Ed.), Formal philosophy: Selected papers of Richard Montague (pp. 119–146). New Haven, CT: Yale University Press.Google Scholar
  31. Montague, R. (1974). The proper treatment of quantification in ordinary English. In R. Thomason (Ed.), Formal philosophy: Selected papers of Richard Montague (pp. 247–270). New Haven, CT: Yale University Press.Google Scholar
  32. Moschovakis, Y. (2006). A logical calculus of meaning and synonymy. Linguistics and Philosophy, 29, 27–89.CrossRefGoogle Scholar
  33. Muskens, R. (2005). Sense and the computation of reference. Linguistics and Philosophy, 28(4), 473–504.CrossRefGoogle Scholar
  34. Muskens, R. (2007). Separating syntax and combinatorics in categorial grammar. Research on Language and Computation, 5, 267–285.CrossRefGoogle Scholar
  35. Oehrle, R. (1994). Term-labelled categorial type systems. Linguistics and Philosophy, 17, 633–678.CrossRefGoogle Scholar
  36. Plummer, A., & Pollard, C. (2012). Agnostic possible worlds semantics. Logical aspects of computational linguistics. In Seventh international conference (LACL 2012), Nantes, July 2012. Springer Lecture Notes in Computer Science (Vol. 7351, pp. 201–212). Berlin: Springer.Google Scholar
  37. Pollard, C. (2008). Hyperintensions. Journal of Logic and Computation, 18(2), 257–282.CrossRefGoogle Scholar
  38. Pollard, C. (2011). Are (linguists’) propositions (topos) propositions? Logical aspects of computational Linguistics 6. Berlin: Springer.Google Scholar
  39. Smith, E. (2010). Correlational comparison in English. Ph.D. Dissertation, Ohio State University, Columbus, OH.Google Scholar
  40. Soames, S. (1987). Direct reference, propositional attitudes, and semantic content. Philosophical Topics, 15, 47–87.CrossRefGoogle Scholar
  41. Stalnaker, R. (1976). Propositions. In A. F. MacKay & D. D. Merril (Eds.), Issues in the philosophy of language (pp. 79–91). New Haven, CT: Yale University Press.Google Scholar
  42. Stalnaker, R. (1984). Inquiry. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  43. Stalnaker, R. (2002). Common ground. Linguistics and Philosophy, 25, 701–721.CrossRefGoogle Scholar
  44. Steedman, M. (2000). The syntactic process. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  45. Thomason, R. (1976). Some extensions of Montague grammar. In B. Partee (Ed.), Montague grammar (pp. 75–111). New York: Academic Press.Google Scholar
  46. Thomason, R. (1980). A model theory for propositional attitudes. Linguistics and Philosophy, 4, 47–70.CrossRefGoogle Scholar
  47. Tichý, P. (2004). Collected papers in logic and philosophy (V. Svoboda, B. Jespersen, & C. Cheyne, Eds.). Filosofia/Dunedin: Czech Academy of Sciences/University of Otago Press.Google Scholar
  48. von Stechow, A. (1989). Focusing and backgrounding operators. Arbeitspapier No. 6, Fachgruppe Sprachwissenschaft, Universität Konstanz.Google Scholar
  49. Wittgenstein, L. (1961). Tractatus Logico-Philosophicus. Translation by D. F. Pears & B. F. McGuinness of Logisch-Philosophische Abhandlung in Annalen der Naturphilosophie, 1921. London and Henley: Routledge & Kegan Paul.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations