, Volume 191, Issue 6, pp 1249–1276 | Cite as

Transition semantics: the dynamics of dependence logic

  • P. Galliani


We examine the relationship between dependence logic and game logics. A variant of dynamic game logic, called Transition Logic, is developed, and we show that its relationship with dependence logic is comparable to the one between first-order logic and dynamic game logic discussed by van Benthem. This suggests a new perspective on the interpretation of dependence logic formulas, in terms of assertions about reachability in games of imperfect information against Nature. We then capitalize on this intuition by developing expressively equivalent variants of dependence logic in which this interpretation is taken to the foreground.


Dependence logic Game logic Imperfect information 



The author wishes to thank Johan van Benthem and Jouko Väänänen for a number of useful suggestions and insights. Furthermore, he wishes to thank the reviewers for a number of highly useful suggestions and comments.


  1. Dekker, P. (2008). A guide to dynamic semantics. ILLC Prepublication Series (PP-2008-42).Google Scholar
  2. Engström, F. (2012). Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21(3), 299–324.CrossRefGoogle Scholar
  3. Galliani, P. (2011). Multivalued dependence logic and independence logic. In: Non-classical modal and predicate logics.Google Scholar
  4. Galliani, P. (2012). Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic, 163(1), 68–84.CrossRefGoogle Scholar
  5. Grädel, E., & Väänänen, J. (2013). Dependence and independence. Studia Logica, 101(2), 399–410.CrossRefGoogle Scholar
  6. Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14(1), 39–100.CrossRefGoogle Scholar
  7. Henkin, L. (1961). Some remarks on infinitely long formulas. In: Infinitistic Methods. Proc. Symposium on Foundations of Mathematics (pp. 167–183). Oxford: Pergamon Press.Google Scholar
  8. Hintikka, J. (1968). Language-games for quantifiers. In: American philosophical quarterly monograph series 2: Studies in logical theory (pp. 46–72). Oxford: Basil Blackwell.Google Scholar
  9. Hintikka, J. (1996). The principles of mathematics revisited. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  10. Hintikka, J., & Sandu, G. (1989). Informational independence as a semantic phenomenon. In J. Fenstad, I. Frolov, & R. Hilpinen (Eds.), Logic, methodology and philosophy of science. Amsterdam: Elsevier.Google Scholar
  11. Hodges, W. (1997). Compositional semantics for a language of imperfect information. Journal of the Interest Group in Pure and Applied Logics, 5(4), 539–563.Google Scholar
  12. Kontinen, J., & Nurmi, V. (2009). Team logic and second-order logic. In: H. Ono, M. Kanazawa, & R. de Queiroz (Eds.), Logic, language, information and computation, Vol. 5514 of Lecture Notes in Computer Science (pp. 230–241). Berlin: Springer.Google Scholar
  13. Kontinen, J., & Väänänen, J. (2009). On definability in dependence logic. Journal of Logic, Language and Information, 3(18), 317–332.CrossRefGoogle Scholar
  14. Mann, A. L. (2009). Independence-friendly cylindric set algebras. Logic Journal of IGPL, 17(6), 719–754.CrossRefGoogle Scholar
  15. Mann, A. L., Sandu, G., & Sevenster, M. (2011). Independence-friendly logic: A game–theoretic approach. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  16. Parikh, R. (1985). The logic of games and its applications. In: Selected Papers of the International Conference on ”Foundations of Computation Theory” on Topics in the Theory of Computation (pp. 111–139). New York, NY, USA.Google Scholar
  17. Väänänen, J. (2007a). Dependence logic. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  18. Väänänen, J. (2007b). Team logic. In J. van Benthem, D. Gabbay, & B. Löwe (Eds.), Interactive logic. Selected papers from the 7th Augustus de Morgan workshop (pp. 281–302). Amsterdam: Amsterdam University Press.Google Scholar
  19. van Benthem, J. (2003). Logic games are complete for game logics. Studia Logica, 75, 183–203.CrossRefGoogle Scholar
  20. van Benthem, J., Ghosh, S., & Liu, F. (2008). Modelling simultaneous games in dynamic logic. Synthese, 165, 247–268.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations