Synthese

, Volume 190, Issue 18, pp 4023–4040 | Cite as

Some topological properties of paraconsistent models

Article

Abstract

In this work, we investigate the relationship between paraconsistent semantics and some well-known topological spaces such as connected and continuous spaces. We also discuss homotopies as truth preserving operations in paraconsistent topological models.

Keywords

Paraconsistent logic Topological semantics Modal logic 

References

  1. Aiello, M., Pratt-Hartman, I. E., & van Benthem, J. (2007). Handbook of spatial logics. Berlin: Springer.CrossRefGoogle Scholar
  2. Aiello, M., & van Benthem, J. (2002). A modal walk through space. Journal of Applied Non-Classical Logics, 12(3–4), 319–363.CrossRefGoogle Scholar
  3. Aiello, M., van Benthem, J., & Bezhanishvili, G. (2003). Reasoning about space: The modal way. Journal of Logic and Computation, 13(6), 889–920.CrossRefGoogle Scholar
  4. Artemov, S., Davoren, J. M., & Nerode, A. (1997). Modal logics and topological semantics for hybrid systems. Technical report. Mathematical Sciences Institute, Cornell University.Google Scholar
  5. Başkent, C. (2011). Completeness of public announcement logic in topological spaces. Bulletin of Symbolic Logic, 17(1), 142.Google Scholar
  6. Başkent, C. (2012). Public announcement logic in geometric frameworks. Fundamenta Infomaticae, 118(3), 207–223.Google Scholar
  7. Béziau, J.-Y. (2002). S5 is a paraconsistent logic and so is first-order classical logic. Logical Studies, 19(1), 1–9.Google Scholar
  8. Béziau, J.-Y. (2005). Paraconsistent logic from a modal viewpoint. Journal of Applied Logic, 3(1), 7–14.CrossRefGoogle Scholar
  9. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in theoretical computer science. Cambridge: Cambridge University Press.Google Scholar
  10. Bourbaki, N. (1996). General topology. Elements of nathematics (Vol. 1). Reading, MA: Addison-Wesley.Google Scholar
  11. Cate, B. T., Gabelaia, D., & Sustretov, D. (2009). Modal languages for topology: Expressivity and definability. Annals of Pure and Applied Logic, 159(1—-2), 146–170.CrossRefGoogle Scholar
  12. da Costa, N. C. A. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15(4), 497–510.CrossRefGoogle Scholar
  13. da Costa, N. C. A., Krause, D., & Bueno, O. (2007). Philosophy of logic. In D. Jacquette (Ed.), Paraconsistent logics and paraconsistency (Vol. 5, pp. 655–781). Amsterdam: Elsevier.Google Scholar
  14. Ferguson, T. M. (2012). Notes on the model theory of demorgan logics. Notre Dame Journal of Formal Logic, 53(1), 113–132.CrossRefGoogle Scholar
  15. Goldblatt, R. (2006). Mathematical modal logic: A view of its evolution. In D. M. Gabbay & J. Woods (Eds.), Handbook of history of logic (Vol. 6). Amsterdam: Elsevier.Google Scholar
  16. Goodman, N. D. (1981). The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27(8–10), 119–126.CrossRefGoogle Scholar
  17. Kremer, P., & Mints, G. (2005). Dynamic topological logic. Annals of Pure and Applied Logic, 131(1—-3), 133–158.CrossRefGoogle Scholar
  18. McKinsey, J. C. C., & Tarski, A. (1944). The algebra of topology. The Annals of Mathematics, 45(1), 141–191.CrossRefGoogle Scholar
  19. McKinsey, J. C. C., & Tarski, A. (1946). On closed elements in closure algebras. The Annals of Mathematics, 47(1), 122–162.CrossRefGoogle Scholar
  20. Mints, G. (2000). A short introduction to intuitionistic logic. Amsterdam: Kluwer.Google Scholar
  21. Mortensen, C. (2000). Topological seperation principles and logical theories. Synthese, 125(1–2), 169–178.CrossRefGoogle Scholar
  22. Parikh, R. (1999). Beliefs, belief revision and splitting languages. In L. S. Moss, J. Ginzburg, & M. de Rijke (Eds.), Logic, language and computation. Stanford, CA: CSLI.Google Scholar
  23. Pratt-Hartman, I. E. (2007). First-order mereotopology. In M. Aiello, I. E. Pratt-Hartman, & J. van Benthem (Eds.), Handbook of spatial logics. Berlin: Springer.Google Scholar
  24. Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219–241.CrossRefGoogle Scholar
  25. Priest, G. (1998). What is so bad about contradictions? Journal of Philosophy, 95(8), 410–426.CrossRefGoogle Scholar
  26. Priest, G. (2002). Paraconsistent logic. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 6, pp. 287–393). Dordrecht: Kluwer.CrossRefGoogle Scholar
  27. Priest, G. (2007). Paraconsistency and dialethism. In D. M. Gabbay & J. Woods (Eds.), Handbook of history of logic (1st ed., Vol. 8, pp. 129–204). Amsterdam: Elsevier.Google Scholar
  28. Priest, G. (2009). Dualising intuitionistic negation. Principia, 13(3), 165–184.Google Scholar
  29. Rauszer, C. (1977). Applications of kripke models to Heyting–Brouwer logic. Studia Logica, 36(1—-2), 61–71.CrossRefGoogle Scholar
  30. van Benthem, J., & Bezhanishvili, G. (2007). Modal logics of space. In M. Aiello, I. E. Pratt-Hartman, & J. van Benthem (Eds.), Handbook of spatial logics. Berlin: Springer.Google Scholar
  31. van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic. Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut d’Histoire et de Philosophie des Sciences et des Techniques (IHPST)Université Paris 1—Panthéon-Sorbonne and École Normale Supérieure, CNRSParisFrance
  2. 2.IHPST75006 ParisFrance

Personalised recommendations