, Volume 190, Issue 4, pp 743–779

How to Lewis a Kripke–Hintikka



It has been argued that a combination of game-theoretic semantics and independence-friendly (IF) languages can provide a novel approach to the conceptual foundations of mathematics and the sciences. I introduce and motivate an IF first-order modal language endowed with a game-theoretic semantics of perfect information. The resulting interpretive independence-friendly logic (IIF) allows to formulate some basic model-theoretic notions that are inexpressible in the ordinary quantified modal logic. Moreover, I argue that some key concepts of Kripke’s new theory of reference are adequately modeled within IIF. Finally, I compare the logic IIF to David Lewis counterpart theory, drawing some morals concerning the interrelation between metaphysical and semantic issues in possible-world semantics.


Independence-friendly logic Game-theoretic semantics Counterpart theory Rigidity Possible-world semantics Essentialism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blackburn P. (2006) Arthur prior and hybrid logic. Synthese 150(3): 329–372CrossRefGoogle Scholar
  2. Blackburn, P., Marx, M. (2002). Tableaux for quantified hybrid logic. In Proceedings of the international conference on automated reasoning with analytic tableaux and related methods, Lecture notes in computer science, (Vol. 2381). Berlin: Springer.Google Scholar
  3. Correia F.: (2007) Modality, quantification and many vlach-operators. Journal of Philosophical Logic, 36: 473–488.CrossRefGoogle Scholar
  4. Corsi, G. (2002). Counterpart semantics. A foundational study on quantified modal logics (pp. 2002–2020). ILLC Prepublications/ILLC.Google Scholar
  5. Fara, D. G. Dear Haecceitism. Erkenntnis (forthcoming).Google Scholar
  6. Fara, M., Williamson, T. (2005). Counterparts and actuality. Mind, 114, 1–30.Google Scholar
  7. Fitting M., Mendelsohn R. L. (1998) First-order modal logic. Kluwer, DordrechtCrossRefGoogle Scholar
  8. Forbes G. (1989) Languages of possibility. Blackwell, OxfordGoogle Scholar
  9. Garson J. (1984) Quantification in modal logic. In: Gabbay D. M., Guenthner F. (eds) Handbook of philosophical logic. Reidel, Dordrecht, pp 249–307CrossRefGoogle Scholar
  10. Haukioja J. (2006) Proto-rigidity. Synthese 150(2): 155–169CrossRefGoogle Scholar
  11. Hazen A.: (1976a) Expressive completeness in modal language. Journal of Philosophical Logic. 5: 25–46.CrossRefGoogle Scholar
  12. Hazen A.: (1976b) Actuality and quantification. Notre Dame Journal of Formal Logic. 31(4): 498–508.CrossRefGoogle Scholar
  13. Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinistic methods. Proceedings of the symposium on foundations of mathematics, Warsaw, Panstwowe (2–9 September 1959) (pp. 167–183). New York: Pergamon PressGoogle Scholar
  14. Hintikka, J. (1969). Existential presuppositions and their elimination. In J. Hintikka (Ed.) Models for modalities. Dordrecht: Reidel.Google Scholar
  15. Hintikka J. (1996) The principles of mathematics revisited. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Hintikka J., Sandu G. (1995) The fallacies of the new theory of reference. Synthese 104: 245–283CrossRefGoogle Scholar
  17. Hintikka J., Sandu G. (1997) Game-theoretical semantics. In: van Benthem J., ter Meulen A. (eds) Handbook of logic and language. Elsevier, AmsterdamGoogle Scholar
  18. Kripke S.: (1963) Semantical considerations on modal logic. Acta Philosophica Fennica. 16: 83–94.Google Scholar
  19. Kripke S. (1971) Identity and necessity. In: Munitz M. (eds) Identity and individuation. New York University, New YorkGoogle Scholar
  20. Kripke S. (1980) Naming and necessity. Harvard University Press, CambridgeGoogle Scholar
  21. LaPorte J. (2000) Rigidity and kind. Philosophical Studies 97(3): 293–316CrossRefGoogle Scholar
  22. Lewis, D. (1979). Counterpart theory and quantified modal logic. In: M. J. Loux (Ed.), The possible and the actual. Readings in the metaphysics of modality. Ithaca: Cornell University PressGoogle Scholar
  23. Lewis D. (1986) On the plurality of worlds. Blackwell, OxfordGoogle Scholar
  24. Peacocke C.: (1978) Necessity and truth theories. Journal of Philosophical Logic. 7: 473–500CrossRefGoogle Scholar
  25. Pietarinen, A.-V. (2004). Semantic games in logic and epistemology. In S. Rahman, J. Symons, D. M. Gabbay & J. P. van Bendegem (Eds.), Logic, epistemology, and the unity of science. Dordrecht: Kluwer.Google Scholar
  26. Pietarinen, A.-V., Sandu, G. (2004). IF Logic, Game-theoretical semantics and the philosophy of science. In S. Rahman, J. Symons, D. M. Gabbay & J. P. van Bendegem (Eds.), Logic, epistemology, and the unity of science. Dordrecht: Kluwer.Google Scholar
  27. Pietarinen, A.-V., Tulenheimo, T. (2004). An Introduction to IF Logic. ESSLLI.Google Scholar
  28. Saarinen E. (1979) Backwards-looking operators in tense logic and in natural language. In: Saarinen E. (eds) Game-theoretical semantics. Springer, DordrechtGoogle Scholar
  29. Sandu, G., & Tulenheimo, T. (2005). Logics of Imperfect Information. Proceedings of CombLog’04.Google Scholar
  30. Schwartz S. P. (2002) Kinds, general terms, and rigidity: A reply to LaPorte. Philosophical Studies 109: 265–277CrossRefGoogle Scholar
  31. Soames S. (2002) Beyond rigidity: The unfinished semantic agenda of naming and necessity. Oxford University Press, New YorkCrossRefGoogle Scholar
  32. Stalnaker, R. (2003). Reference and necessity. In Ways a world might be metaphysical and anti-metaphysical essays. Oxford: Oxford University PressGoogle Scholar
  33. Stanley, J. (1997). Names and rigid designation. In B. Hale & C. Wright (Ed.) A companion to the philosophy of language (pp. 555–585). Oxford: Blackwell.Google Scholar
  34. Varzi, A. (2006). Strict identity with no overlap. Studia Logica, 82(3), 371–378.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Universität Tübingen, Philosophisches SeminarTübingenGermany

Personalised recommendations