, Volume 190, Issue 5, pp 891–908 | Cite as

Substantive assumptions in interaction: a logical perspective

  • Olivier RoyEmail author
  • Eric Pacuit


In this paper we study substantive assumptions in social interaction. By substantive assumptions we mean contingent assumptions about what the players know and believe about each other’s choices and information. We first explain why substantive assumptions are fundamental for the analysis of games and, more generally, social interaction. Then we show that they can be compared formally, and that there exist contexts where no substantive assumptions are being made. Finally we show that the questions raised in this paper are related to a number of issues concerning “large” structures in epistemic game theory.


Epistemic game theory Epistemic logic Harsanyi type spaces Comparing information Substantive assumptions Structural assumptions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramsky, S., & Zvesper, J. A. (2012). From Lawvere to Brandenburger-Keisler: Interactive forms of diagonalization and self-reference. Colagebraic Methods in Computer Science, LNCS, 7399 1–19.Google Scholar
  2. Aumann R. J. (1987) Correlated equilibrium as an expression of bayesian rationality. Econometrica 55: 1–18CrossRefGoogle Scholar
  3. Aumann R. J. (1999) Interactive epistemology I: Knowledge. International Journal of Game Theory 28: 263–300CrossRefGoogle Scholar
  4. Aumann, R. (2010). Interview on epistemic logic. In Hendricks, V., & Roy, O. (Eds.), Epistemic logic, 5 questions. New York: Automatic Press.Google Scholar
  5. Aumann R., Dreze J. (2008) Rational expectations in games. American Economic Review 98: 72–86CrossRefGoogle Scholar
  6. Bernheim D. (1984) Rationalizable strategic behavior. Econometrica 52: 1007–1028CrossRefGoogle Scholar
  7. Blackburn P., de Rijke M., Venema Y. (2001) Modal logic. Cambridge University Press, CambridgeGoogle Scholar
  8. Blackburn, P., van Benthem, J., & Wolter, F. (Eds.). (2006). Handbook of modal logic. Amsterdam: Elsevier.Google Scholar
  9. Board O. (2002) Knowledge, beliefs and game-theoretic solution concepts. Oxford Review of Economic Policy 18: 433–445CrossRefGoogle Scholar
  10. Brandenburger, A. (2003). On the existence of a ‘complete’ possibility structure. In Basili, M., Dimitri, N., & Gilboa, I. (Eds.), Cognitive processes and economic behavior (pp. 30–34). London: Routledge.Google Scholar
  11. Brandenburger A. (2007) The power of paradox: Some recent developments in interactive epistemology. International Journal of Game Theory 35: 465–492CrossRefGoogle Scholar
  12. Brandenburger, A., & Dekel, E. (1993). Hierarchies of beliefs and common knowledge. Journal of Economic Theory, 59, 189–198Google Scholar
  13. Brandenburger A., Friedenberg A., Keisler H. J. (2008) Admissibility in games. Econometrica 76: 307–352Google Scholar
  14. Brandenburger A., Keisler H. J. (2006) An impossibility theorem on beliefs in games. Studia Logica 84(2): 211–240CrossRefGoogle Scholar
  15. de Bruin, B. (2010). Explaining games: The epistemic programme in game theory. Synthese Library (Vol. 346). New York: Springer.Google Scholar
  16. Fagin R., Halpern J. Y. (1987) Belief, awareness, and limited reasoning. Artificial Intelligence 34(1): 39–76CrossRefGoogle Scholar
  17. Fagin R., Halpern J. (1994) Reasoning about knowledge and probability. Journal of the ACM 41: 340–367CrossRefGoogle Scholar
  18. Fagin R., Halpern J., Geanakoplos J., Vardi M. (1999) The hierarchical approach to modeling knowledge and common knowledge. International Journal of Game Theory 28(3): 331–365CrossRefGoogle Scholar
  19. Fagin R., Halpern J. Y., Moses Y., Vardi M. (1995) Reasoning about knowledge. MIT Press, LondonGoogle Scholar
  20. Friedenberg A. (2010) When do type structures contain all hierarchies of beliefs?. Games and Economic Behavior 68(1): 108–129CrossRefGoogle Scholar
  21. Friedenberg, A., & Meier, M. (2010). On the relationship between hierarchy and type morphisms. Economic Theory, 1–23. doi: 10.1007/s00199-010-0517-2
  22. Goldblatt R. (2006) Final coalgebras and the hennessy-milner property. Annals of Pure and Applied Logic 183: 77–93CrossRefGoogle Scholar
  23. Goldblatt, R. (2008). Deductive systems for coalgebras over measurable spaces. Journal of Logic and Computation Page. doi: 10.1093/logcom/exn092
  24. Halpern J. Y. (2001) Alternative semantics for unawareness. Games and Economic Behavior 37(2): 321–339CrossRefGoogle Scholar
  25. Harel D., Kozen D., Tiuryn J. (2000) Dynamic logic. The MIT Press, LondonGoogle Scholar
  26. Heifetz A. (1999) How canonical is the canonical model? A comment on Aumann’s interactive epistemology. International Journal of Game Theory 28(3): 435–442CrossRefGoogle Scholar
  27. Heifetz A., Meier M., Schipper B. C. (2006) Interactive unawareness. Journal of Economic Theory 130(1): 78–94CrossRefGoogle Scholar
  28. Heifetz A., Mongin P. (2001) Probability logic for type spaces. Games and Economic Behavior 35: 31–53CrossRefGoogle Scholar
  29. Heifetz A., Samet D. (1998a) Knowledge spaces with arbitrarily high rank. Games and Economic Behavior 22(2): 260–273CrossRefGoogle Scholar
  30. Heifetz A., Samet D. (1998b) Topology-free typology of beliefs. Journal of Economic Theory 82: 324–341CrossRefGoogle Scholar
  31. Hintikka J. (1962) Knowledge and belief: An introduction to the logic of two notions. ornell University Press, Ithaca, NYGoogle Scholar
  32. Huber, F., & Schmidt-Petri, C. (2009). Degrees of belief. Synthese Library (Vol. 342). New York: Springer.Google Scholar
  33. Mariotti T., Meier M., Piccione M. (2005) Hierarchies of beliefs for compact possibility models. Journal of Mathematical Economics 41: 303–324CrossRefGoogle Scholar
  34. Meier M. (2005) On the nonexistence of universal information structures. Journal of Economic Theory 122(1): 132–139CrossRefGoogle Scholar
  35. Meier M. (2006) Finitely additive beliefs and universal type spaces. Annals of Probability 34(1): 386–422CrossRefGoogle Scholar
  36. Meier M. (2008) Universal knowledge-belief structures. Game and Economic Behavior 62: 53–66CrossRefGoogle Scholar
  37. Mertens J. F., Zamir S. (1985) Formulation of Bayesian analysis for games with incomplete information. International Journal of Game Theory 14(1): 1–29CrossRefGoogle Scholar
  38. Modica S., Rustichini A. (1994) Awareness and partitional information structures. Theory and Decision 37(1): 107–124CrossRefGoogle Scholar
  39. Moscati, I. (2009). Interactive and common knowledge in the state-space model. Cesmep working papers. University of Turin.
  40. Parikh, R. (1991). Monotonic and non-monotonic logics of knowledge. Fundamenta Informaticae, XV, 255–274.Google Scholar
  41. Pearce D. (1984) Rationalizable strategic behavior and the problem of perfection. Econometrica 52: 1029–1050CrossRefGoogle Scholar
  42. Pintér M. (2005) Type space on a purely measurable parameter space. Economic Theory 26(1): 129–139CrossRefGoogle Scholar
  43. Pintér M. (2010) The non-existence of a universal topological type space. Journal of Mathematical Economics 46(2): 223–229CrossRefGoogle Scholar
  44. Samuelson L. (2004) Modeling knowledge in economic analysis. Journal of Economic Literature 42(2): 367–403CrossRefGoogle Scholar
  45. Segerberg K. (1994) A model existence theorem in infinitary propositional modal logic. Journal of Philosophical Logic 23(4): 337–367CrossRefGoogle Scholar
  46. Siniscalchi, M. (2008). Epistemic game theory: Beliefs and types. In Durlauf, S., & Blume, L. (Eds.), The new palgrave dictionary of economics. Basingstoke: Palgrave Macmillan.Google Scholar
  47. Stalnaker R. (1999) Extensive and strategic forms: Games and models for games. Research in Economics 53: 293–319CrossRefGoogle Scholar
  48. van Benthem J. (2010) Modal logic for open minds. CSLI Publications, StanfordGoogle Scholar
  49. van Benthem J., Girard P., Roy O. (2009) Everything else being equal: A modal logic for ceteris paribus preferences. Journal of philosophical logic 38(1): 83–125CrossRefGoogle Scholar
  50. van Benthem, J., Pacuit, E., & Roy, O. (2011). Toward a theory of play: A logical perspective on games and interaction. Games 2(1), 52–86. doi: 10.3390/g2010052.Google Scholar
  51. van Ditmarsch, H., van de Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic. Synthese Library (Vol. 337). New York: Springer.Google Scholar
  52. Venema, Y. (2006). Algebra and coalgebra. In Blackburn, P., van Benthem, J., & Wolter, F. (Eds.), Handbook of modal logic (pp. 331–426). Amsterdam: ElsevierGoogle Scholar
  53. Zhou C. (2009) A complete deductive system for probability logic. Journal of Logic and Computation 19(6): 1427–1454CrossRefGoogle Scholar
  54. Zvesper J., Pacuit E. (2010) A note on assumption-completeness in modal logic. Logic and the Foundations of Game and Decision Theory–LOFT 8: 190–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.TiLPSTilburg UniversityTilburgThe Netherlands

Personalised recommendations