Synthese

, Volume 190, Issue 16, pp 3421–3438 | Cite as

An analysis of information visualisation

Article

Abstract

Philosophers have relied on visual metaphors to analyse ideas and explain their theories at least since Plato. Descartes is famous for his system of axes, and Wittgenstein for his first design of truth table diagrams. Today, visualisation is a form of ‘computer-aided seeing’ information in data. Hence, information is the fundamental ‘currency’ exchanged through a visualisation pipeline. In this article, we examine the types of information that may occur at different stages of a general visualization pipeline. We do so from a quantitative and a qualitative perspective. The quantitative analysis is developed on the basis of Shannon’s information theory. The qualitative analysis is developed on the basis of Floridi’s taxonomy in the philosophy of information. We then discuss in detail how the condition of the ‘data processing inequality’ can be broken in a visualisation pipeline. This theoretic finding underlines the usefulness and importance of visualisation in dealing with the increasing problem of data deluge. We show that the subject of visualisation should be studied using both qualitative and quantitative approaches, preferably in an interdisciplinary synergy between information theory and the philosophy of information.

Keywords

Information map Information theory Philosophy of information Visualisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buja A., Cook D., Swayne D.F. (1996) Interactive high-dimensional data visualization. Journal of Computational and Graphical Statistics 5: 78–99Google Scholar
  2. Claude C.S. (1996) Algorithmic information theory: Open problems. Journal of Universal Computer Science 2: 439–441Google Scholar
  3. Chaitin G.J. (1975) A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery 22(3): 329–340CrossRefGoogle Scholar
  4. Checkland P.B., Scholes J. (1990) Soft systems methodology in action. Wiley, New YorkGoogle Scholar
  5. Chen M., Ebert D., Hagen H., Laramee R.S., van Liere R., Ma K.-L., Ribarsky W., Scheuermann G., Silver D. (2009) Data, information and knowledge in visualization. IEEE Computer Graphics and Applications 29(1): 12–19CrossRefGoogle Scholar
  6. Chen M., Jänicke H. (2010) An information-theoretic framework for visualization. IEEE Transactions on Visualization and Computer Graphics 16(6): 1206–1215CrossRefGoogle Scholar
  7. Chi, E. H. (2000). A taxonomy of visualization techniques using the data state reference model. In Proceedings of IEEE Information Visualization, 69–75.Google Scholar
  8. Cover T.M., Thomas J.A. (2006) Elements of information theory. Wiley, New YorkGoogle Scholar
  9. Davis G.B., Olson M.H. (1985) Management information systems: Conceptual foundations, structure, and development, 2nd ed. McGraw-Hill, New YorkGoogle Scholar
  10. Drocourt Y., Borgo R., Scharrer K., Murray T., Bevan S.I., Chen M. (2011) Temporal visualization of boundary-based geo-information using radial projection. Computer Graphics Forum 30(3): 981–990CrossRefGoogle Scholar
  11. Floridi L. (2002) What is the philosophy of information?. Metaphilosophy 33(12): 123–145CrossRefGoogle Scholar
  12. Floridi L. (2010) Information: A very short introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  13. Floridi L. (2011) The philosophy of information. Oxford University Press, OxfordCrossRefGoogle Scholar
  14. Floridi, L. Forthcoming. Perception and testimony as data providers. Logique et Analyse.Google Scholar
  15. Keim D.A., Kriegel H.-P. (1996) Visualization techniques for mining large databases: A comparison. IEEE Transactions on Knowledge and Data Engineering 8(16): 923–936CrossRefGoogle Scholar
  16. Sacks O. (1986) The man who mistook his wife for a hat. Pan Macmillan, LondonGoogle Scholar
  17. Sacks O. (2010) The mind’s eye. Pan Macmillan, LondonGoogle Scholar
  18. Shannon C.E. (1948) A mathematical theory of communication. Bell System Technical Journal 27: 379–423CrossRefGoogle Scholar
  19. Shannon, C. E. (1993, originally 1950). The lattice theory of information, reprinted. In N. J. A. Sloane, & A. D. Wyner (Eds.) Collected Papers. Los Alamos, CA: IEEE Computer Society Press.Google Scholar
  20. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of IEEE Symposium on Visual Languages (pp. 336–343).Google Scholar
  21. Tory, M., Möller, T. (2004). Rethinking visualization: A high-level taxonomy. In Proceedings of IEEE Information Visualization (pp. 151–158). Austin.Google Scholar
  22. Tufte E.R. (2001) The visual display of quantitative information. 2nd Ed. Graphics Press, CheshireGoogle Scholar
  23. Wehrend, S., Lewis, C. (1990). A problem-oriented classification of visualization techniques. In Proceedings of IEEE Visualization (pp.139–143).Google Scholar
  24. Zhou, M. X., Feiner S. K. (1998). Visual task characterization for automated visual discourse synthesis. In Proceedings of SIGCHI Conference on Human Factors in Computing Systems (pp. 392–399).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.University of OxfordOxfordUK
  2. 2.Department of PhilosophyUniversity of HertfordshireHertfordshireUK

Personalised recommendations