Synthese

, Volume 187, Supplement 1, pp 43–72 | Cite as

The frame problem, the relevance problem, and a package solution to both

Article

Abstract

As many philosophers agree, the frame problem is concerned with how an agent may efficiently filter out irrelevant information in the process of problem-solving. Hence, how to solve this problem hinges on how to properly handle semantic relevance in cognitive modeling, which is an area of cognitive science that deals with simulating human’s cognitive processes in a computerized model. By “semantic relevance”, we mean certain inferential relations among acquired beliefs which may facilitate information retrieval and practical reasoning under certain epistemic constraints, e.g., the insufficiency of knowledge, the limitation of time budget, etc. However, traditional approaches to relevance—as for example, relevance logic, the Bayesian approach, as well as Description Logic—have failed to do justice to the foregoing constraints, and in this sense, they are not proper tools for solving the frame problem/relevance problem. As we will argue in this paper, Non-Axiomatic Reasoning System (NARS) can handle the frame problem in a more proper manner, because the resulting solution seriously takes epistemic constraints on cognition as a fundamental theoretical principle.

Keywords

The frame problem Semantic relevance Confirmation paradox The Bayesian approach Description Logic Non-Axiomatic Reasoning System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audi R. (1994) Dispositional beliefs and dispositions to believe. Noûs 28: 419–434CrossRefGoogle Scholar
  2. Baader, F. (eds) et al (2007) The description logic handbook: Theory, implementation and applications. Cambridge University Press, CambridgeGoogle Scholar
  3. Brachman R. (1977) What’s in a concept: Structural foundations for semantic networks. International Journal of Man-Machine Studies 9: 127–152CrossRefGoogle Scholar
  4. Dennett D. (1987) Cognitive wheels: the frame problem of AI. In: Pylyshyn Z.W. (Ed.), The robots dilemma. Ablex, Norwood, NJ, pp 41–64Google Scholar
  5. Devlin K. (1991) Logic and information. Cambridge University Press, CambridgeGoogle Scholar
  6. Dreyfus H.L., Dreyfus S.E. (1987) How to stop worrying about the frame problem even though it’s computationally insoluble. In: Pylyshyn Z.W. (Ed.), The robot’s dilemma. Ablex, Norwood, pp 95–112Google Scholar
  7. Dunn J. M. (1986) Relevance logic and entailment. In: Guenthner F., Gabbay D. (eds) Handbook of philosophical logic (Vol. 3). Reidel, Dordrecht, pp 117–124Google Scholar
  8. Fitelson B. (2006) The paradox of confirmation. Philosophy Compass 1: 95–113CrossRefGoogle Scholar
  9. Fodor J. (1983) The modularity of mind: An essay in faculty psychology. The MIT Press, LondonGoogle Scholar
  10. Fodor J. (1987) Modules, frames, fridgeons, sleeping dogs, and the music of the spheres. In: Pylyshyn Z.W. (Ed.), The robots dilemma. Ablex, Norwood, NJ, pp 139–149Google Scholar
  11. Fodor J. (2000) The mind doesn’t work that way—the scope and limits of computational psychology. The MIT press, LondonGoogle Scholar
  12. Glymour C. (1987) Android epistemology and the frame problem: Comments on Dennett’s “cognitive wheels”. In: Pylyshyn Z.W. (Ed.), The robots dilemma. Ablex, Norwood, NJ, pp 65–76Google Scholar
  13. Glymour, C., Cooper, G. (eds) (1999) Computation, causation, discovery. The MIT Press, Cambridge MAGoogle Scholar
  14. Goertzel, B., Pennachin, C. (eds) (2007) Artificial general intelligence. Springer, BerlinGoogle Scholar
  15. Good J. (1960) Paradox of confirmation. The British Journal of Philosophy of Science 42: 145–149Google Scholar
  16. Hanks S., McDermott D. (1987) Nonmonotonic logic and temporal projection. Artificial Intelligence 33: 379–412CrossRefGoogle Scholar
  17. Haugeland J. (1981) The nature and the plausibility of cognitivism. Behaviorist and Brain Sciences I: 215–266Google Scholar
  18. Haugeland J. (1987) An overview of the frame problem. In: Pylyshyn Z.W. (Ed.), The robots dilemma. Ablex, Norwood, NJ, pp 77–94Google Scholar
  19. Heinsohn J. et al (1994) An empirical analysis of terminological representation systems. Artificial Intelligence 68: 367–397CrossRefGoogle Scholar
  20. Hempel C. (1945) Studies in the logic of confirmation. Mind 54: 1–26CrossRefGoogle Scholar
  21. Jaeger, M. (1994). Probabilistic reasoning in terminological logics. In Pietro et al. (Eds.), Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’ 94) (pp. 305–316).Google Scholar
  22. Küsters R. (2001) Non-standard inferences in description logics. Springer, BerlinCrossRefGoogle Scholar
  23. Lawson T. (1985) The context of prediction (and the paradox of confirmation). British Journal for the Philosophy of Science 36: 393–407CrossRefGoogle Scholar
  24. Lormand E. (1990) Framing the frame problem. Synthese 82: 353–374CrossRefGoogle Scholar
  25. Mares E. (1997) Relevant logic and the theory of information. Synthese 109: 345–360CrossRefGoogle Scholar
  26. Mares E. (2004) Relevant logic: A philosophical interpretation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Mares, E. (2006). Relevance logic. Stanford encyclopedia of philosophy, http://plato.stanford.edu/entries/logic-relevance/#Sem.
  28. Mackie J. L. (1969) The relevance criterion of confirmation. British Journal of Philosophy of Science 20: 27–40CrossRefGoogle Scholar
  29. Margolis, E., Laurence, S. (eds) (1999) Concepts: Core readings. The MIT Press. Cambridge MAGoogle Scholar
  30. Minsky M. (1981) A Framework for representing knowledge. In: Haugeland J. (Ed.), Mind sesign. Bradford Press, Montgomery, pp 95–128Google Scholar
  31. McCarthy J., Hayes P. J. (1969) Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence 4: 463–502Google Scholar
  32. Pearl J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San MateoGoogle Scholar
  33. Pearl J. (2009) Causality: Models, reasoning, and inference (2nd ed.). Cambridge University Press, New YorkGoogle Scholar
  34. Quillian R. (1967) Word concepts: A theory and simulation of some basic capacities. Behavioral Science 12: 410–430CrossRefGoogle Scholar
  35. Quine W. V. A. (1951) Two dogmas of empiricism. The Philosophical Review 60: 20–43CrossRefGoogle Scholar
  36. Quine, W. V. A. (1969) Natural kinds. In Ontological relativity and other essays (pp. 114–138). New York: Columbia University Press)Google Scholar
  37. Reiter, R., & Criscuolo, G. (1981). On interacting defaults. In Proceedings of the seventh international joint conference on artificial intelligence (pp. 270–276).Google Scholar
  38. Restall G. (1996) Information flow and relevant logics. In: Seligman J., Westerstahl D. (eds) Logic, language and computation (Vol. 1). CSLI, Stanford, pp 463–478Google Scholar
  39. Shanahan M. (1997) Solving the frame problem. The MIT Press, Cambridge, MAGoogle Scholar
  40. Shanahan, M. (2009). The frame problem. In The stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/frame-problem/.
  41. Smith B. C. (1999) Computation. In: Wilson R. A., Keil F. C. (eds) The MIT encyclopedia of the cognitive science. MIT press, London, pp 153–155Google Scholar
  42. Spirters, P. et al (eds) (2000) Causation, prediction, and search (2nd ed.). The MIT Press, Cambridge MAGoogle Scholar
  43. Straccia U. (2001) Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14: 137–166Google Scholar
  44. Talbott, W. (2008). Bayesian epistemology. In Stanford encyclopedia of philosophy, http://plato.stanford.edu/entries/epistemology-bayesian/.
  45. Touretzky D. (1986) The mathematics of inheritance systems. Morgan Kaufmann, Los AltosGoogle Scholar
  46. Wang P. (1994) From inheritance relation to non-axiomatic logic. International Journal of Approximate Reasoning 11: 281–319CrossRefGoogle Scholar
  47. Wang P. (1996) Heuristics and normative models. International Journal of Approximate Reasoning 14: 221–235CrossRefGoogle Scholar
  48. Wang P. (2001) Confidence as higher-order uncertainty. In: De Cooman G. (Ed.), The second international symposium on imprecise probabilities and their applications. New York, Ithaca, pp 352–361Google Scholar
  49. Wang P. (2004a) The limitation of Bayesianism. Artificial Intelligence 158: 97–106CrossRefGoogle Scholar
  50. Wang, P. (2004b). The generation and evaluation of generic sentences. Philosophical Trends (Supplement 2004), 35–44.Google Scholar
  51. Wang P. (2006) Rigid flexibility: The logic of intelligence. Springer, DordrechtGoogle Scholar
  52. Wang P. (2007) Three fundamental misconceptions of artificial intelligence. Journal of Experimental & Theoretical Artificial Intelligence 19: 249–268CrossRefGoogle Scholar
  53. Wang P. (2009a) Formalization of evidence: A comparative study. Journal of Artificial General Intelligence 1: 25–53CrossRefGoogle Scholar
  54. Wang P. (2009b) Analogy in a general-purpose reasoning system. Cognitive Systems Research 10: 286–296CrossRefGoogle Scholar
  55. Yen, J. et al. (1991). Generalizing term subsumption language to fuzzy logic. In R. Reiter et al. (Eds.), Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAU’ 91) (pp. 472–477).Google Scholar
  56. Young M. (2011) Relevance and relationalism. Metaphysica 12: 19–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of PhilosophyFudan UniversityShanghaiChina
  2. 2.Department of Computer and Information Sciences, College of Science & TechnologyTemple UniversityPhiladelphiaUSA

Personalised recommendations