, Volume 186, Issue 1, pp 55–102

The twofold role of diagrams in Euclid’s plane geometry



Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams are supposed to have an appropriate relation with these objects. I take this relation to be a quite peculiar sort of representation. Its peculiarity depends on the two following claims that I shall argue for: (i) The identity conditions of EPG objects are provided by the identity conditions of the diagrams that represent them; (ii) EPG objects inherit some properties and relations from these diagrams.


Euclid Plane geometry Diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avigad J., Dean E., Mumma J. (2009) A formal system for Euclid’s Elements. The Review of Symbolic Logic 2: 700–768CrossRefGoogle Scholar
  2. Azzouni J. (2004) Proof and ontology in Euclidean mathematics. In: Kjeldsen T. H., Pederson S. A., Sonne-Hansen L. M. (eds) New trends in the history and philosophy of mathematics. University Press of Southern Denmark, Odense, pp 117–133Google Scholar
  3. Burnyeat M. F. (1987) Platonism and mathematics: A prelude to discussion. In: Graeser A. (eds) Mathematics and metaphysics in Aristotle. Haupt, Bern, pp 213–240Google Scholar
  4. Cavaing M. et al (1982) Quelques remarques sur le traitement du continu dans les Éléments d’Euclide et la Physique d’Aristote. In: Apéry R. (Ed.), Penser les mathématiques. Éditions du Seuil, Paris, pp 145–166Google Scholar
  5. Cavaing M. (1997) La figure et le nombre. Recherches sur les premires mathématiques des Grecs. Presses Universitaires du Septentrion, Villeneuve d’Ascq: Presses Universitaires du Septentrion.Google Scholar
  6. Chihara C. (2004) A structural account of mathematics. Clarendon Press, OxfordGoogle Scholar
  7. Coliva, A. (2011). Human diagrammatic reasoning and seeing-as. Synthese. doi:10.1007/s11229-011-9982-9
  8. Euclid. (EGH). Elementa, Vols. I–IV of Euclidi Opera Omnia. B. G. Teubneri, Lipsiæ. Edited by I. L. Heiberg & H. Menge, 1883–1888, 8 vols. + 1 suppl. New edition by E. S. Stamatis, Teubner, Leipzig, 1969–1977, 5 volumes in 6 tomes.Google Scholar
  9. Euclid. (EEH). The Thirteen Books of the Elements. Cambridge University Press, Cambridge, 2nd ed., 1926. Translated with introduction and commentary by Sir T. L. Heath, 3 vols.Google Scholar
  10. Euclid. (EFV). Les Éléments. Paris: PUF. 4 vols. French translation and comments by B. Vitrac.Google Scholar
  11. Friedman, M. (1985). Kant’s theory of geometry. Philosophical Review, 94, 455–506. Also in M. Friedman, Kant and the exact sciences, Harvard University Press, Cambridge, MA, 1992, pp. 55–95. I refer to this last edition.Google Scholar
  12. Friedman, M. (2012). Kant on geometry and spatial intuition. Synthese. doi:10.1007/s11229-012-0066-2.
  13. Hartshorne R. (2000) Geometry: Euclid and beyond. Springer, New YorkGoogle Scholar
  14. Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner. (2nd edition: 1903; 3th edition: 1909.)Google Scholar
  15. Hilbert, D. (1998). Neubegründung der Mathematik: Erste Mitteilung. Abhandlungen aus dem Seminar der Hamburgischen Universität, 3(1), 157–177. (English translation from From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, pp. 198–214, P. Mancosu, Ed., Oxford University Press, Oxford. I quote from this translation.)Google Scholar
  16. Kant, I. (CPRS). Critique of pure reason (N. K. Smith, Trans.). Basingstoke: Macmillan.Google Scholar
  17. Klein, J. (1934–1936). Die griechische Logistik und die Entstehung der Algebra. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung B Studien), 3(1, 3), 18–105 (n. 1: 1934) and 122–235 (n. 3: 1936). (English translation (of a slightly amended version) Greek Mathematical Thought and the Origin of Algebra, E. Brann, Ed., 1968, Cambridge, MA, MIT Press.)Google Scholar
  18. Macbeth, D. (2010). Diagrammatic reasoning in Euclid’s Elements. In B. Van Kerkhove, J. De Vuyst, & J. P. Van Bendegem (Eds.), Philosophical perspectives on mathematical practice (Vol. 12 of Texts in philosophy). London: College Publications.Google Scholar
  19. Mäenpää P., von Plato L. (1990) The logic of Euclidean construction procedures. Acta Philosophica Fennica 39: 275–293Google Scholar
  20. Manders K. (2008a) Diagram-based geometric practice. In: Mancosu P. (Ed.), The philosophy of mathematical practice. Clarendon Press, Oxford, pp 65–79CrossRefGoogle Scholar
  21. Manders K. (2008b) The Euclidean diagram (1995). In: Mancosu P. (Ed.), The philosophy of mathematical practice. Clarendon Press, Oxford, pp 80–133CrossRefGoogle Scholar
  22. McLarty C. (2008) What structuralism archives. In: Mancosu P. (Ed.), The philosophy of mathematical practice. Oxford University Press, Oxford, pp 354–369CrossRefGoogle Scholar
  23. Miller N. (2008) Euclid and his twentieth century rivals: Diagrams in the logic of Euclidean geometry. CSLI, StanfordGoogle Scholar
  24. Mueller I. (1981) Philosophy of mathematics and deductive structure in Euclid’s Elements. MIT Press, Cambridge, MAGoogle Scholar
  25. Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. PhD thesis, Carnegie Mellon University.Google Scholar
  26. Mumma J. (2010) Proofs, pictures, and Euclid. Synthese 175: 255–287CrossRefGoogle Scholar
  27. Mumma, J. (2011). Constructive geometrical reasoning and diagrams. Synthese. doi:10.1007/s11229-011-9981-x
  28. Netz R. (1999) The shaping of deduction in Greek mathematics. A study in cognitive history. Cambridge university press, CambridgeCrossRefGoogle Scholar
  29. Norman J. (2006) After Euclid. Visual reasoning and the epistemology of diagrams. CSLI Publications, StanfordGoogle Scholar
  30. Panza M. (1992) Le labyrinthe du continu. In: Salanskis J.-M., Sinaceur H. (Ed.), De la continuité comme concept au continu comme objet mathématique. Springer-France, Paris, pp 16–30Google Scholar
  31. Panza M. (1997) Classical sources for the concepts of analysis and synthesis. In: Otte M., Panza M. (eds) Analysis and synthesis in mathematics. History and philosophy. Kluwer, Dordrecht, pp 365–414CrossRefGoogle Scholar
  32. Panza M. (2002) Continuidad local Aristotélica y geometria Euclidiana. In: Alvarez C., Barahona A. (eds) La Continuidad en las Ciencias. Fondo de Cultura Económica, Mexico, pp 37–120Google Scholar
  33. Panza M. (2007) What is new and what is old in Viète’s analysis restituita and algebra novas, and where do they come from? Some reflections on the relations between algebra and analysis before Viète. Revue d’Histoire des mathématiques 13: 83–153Google Scholar
  34. Panza M. (2011) Rethinking geometrical exactness. Historia Mathematica 38: 42–95CrossRefGoogle Scholar
  35. Parsons C. (2008) Mathematical thought and its objects. Cambridge University Press, CambridgeGoogle Scholar
  36. Plato. (EC). Plato, in twelve volumes with an English translation (12 Vols.). Cambridge, MA: Harvard University Press.Google Scholar
  37. Proclus. (CEELF). In primum Euclidis Elementorum librum commentarii (B. G. Teubner, Lipsiæ, 1873). Ex recognitione G. Friedlein.Google Scholar
  38. Proclus. (CEEEM). A Commentary on the First Book of Euclid’s Elements (Translated with Introduction and Notes by G. R. Morrow). Princeton: Princeton University Press.Google Scholar
  39. Reed V. (1995) Figures of thought. Mathematics and mathematical texts. Routledge, LondonCrossRefGoogle Scholar
  40. Russo L. (1988) The definitions of fundamental geometric entities contained in book I of Euclid’s Elements. Archive for History of Exact Sciences 52: 195–219CrossRefGoogle Scholar
  41. Saito K. (2006) A preliminary study in the critical assessment of diagrams in Greek mathematical works. Sciamus 7: 81–144Google Scholar
  42. Shabel L. (2003) Mathematics in Kant’s critical philosophy. Routledge, New YorkGoogle Scholar
  43. Stekeler-Weithofer P. (1992) On the concept of proof in elementary geometry. In: Detlefsen M. (Ed.), Proof and knowledge in mathematics. Routledge, London, pp 135–157Google Scholar
  44. Taisbak C.M. (2003) ΔEΔOMENA. Euclid’s Data or The importance of being given. Museum Tusculanum Press, CopenhagenGoogle Scholar
  45. Tennant N. (1986) The withering away of formal semantics?. Mind and Language 1: 302–318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.CNRS, IHPST (UMR 8590 of CNRS, University of Paris 1, and ENS Paris)ParisFrance

Personalised recommendations