, Volume 186, Issue 1, pp 231–255 | Cite as

Kant on geometry and spatial intuition

  • Michael Friedman


I use recent work on Kant and diagrammatic reasoning to develop a reconsideration of central aspects of Kant’s philosophy of geometry and its relation to spatial intuition. In particular, I reconsider in this light the relations between geometrical concepts and their schemata, and the relationship between pure and empirical intuition. I argue that diagrammatic interpretations of Kant’s theory of geometrical intuition can, at best, capture only part of what Kant’s conception involves and that, for example, they cannot explain why Kant takes geometrical constructions in the style of Euclid to provide us with an a priori framework for physical space. I attempt, along the way, to shed new light on the relationship between Kant’s theory of space and the debate between Newton and Leibniz to which he was reacting, and also on the role of geometry and spatial intuition in the transcendental deduction of the categories.


Geometry Diagrammatic reasoning Space Intuition Schematism Transcendental deduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison H. E. (1973) The Kant-Eberhard controversy. John Hopkins University Press, BaltimoreGoogle Scholar
  2. Allison H. E. (1983) Kant’s transcendental idealism. Yale University Press, New HavenGoogle Scholar
  3. Carson E. (1997) Kant on intuition in geometry. Canadian Journal of Philosophy 27: 489–512Google Scholar
  4. De Pierris G. (2001) Geometry in the metaphysical exposition. In: Gerhardt V., Horstmann R.-P., Schumacher R. (eds) Kant und die Berliner Aufklärung, Band 2. de Gruyter, Berlin, pp 197–204Google Scholar
  5. Friedman M. (1992) Kant and the exact sciences. Harvard University Press, CambridgeGoogle Scholar
  6. Friedman M. (2000) Geometry, construction, and intuition in Kant and his successors. In: Sher G., Tieszen R. (eds) Between logic and intuition: Essays in honor of Charles Parsons. Cambridge University Press, Cambridge, pp 186–218CrossRefGoogle Scholar
  7. Friedman M. (2003) Transcendental philosophy and mathematical physics. Studies in History and Philosophy of Science 34: 29–43CrossRefGoogle Scholar
  8. Friedman M. (2005) Kant on science and experience. In: Mercer C., O’Neill E. (eds) Early modern philosophy: Mind, matter, and metaphysics. Oxford University Press, Oxford, pp 262–275Google Scholar
  9. Friedman M. (2009) Newton and Kant on absolute apace: From theology to transcendental philosophy. In: Bitbol M., Kerszberg P., Petitot J. (eds) Constituting objectivity: Transcendental perspectives on modern physics. Springer, Berlin, pp 35–50Google Scholar
  10. Kant, I. (1902-). Kant’s gesammelte Schriften. Berlin: de Gruyter.Google Scholar
  11. Manders K. (2008a) Diagram-based geometrical practice. In: Mancosu P. (ed) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 65–79CrossRefGoogle Scholar
  12. Manders K. (2008b) The Euclidean diagram. In: Moncosu P. (ed) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 80–133CrossRefGoogle Scholar
  13. Newton I. (2004). Isaac Newton: Philosophical writings. In Janiak A. (Ed.). Cambridge: Cambridge University Press.Google Scholar
  14. Parsons C. (1992) The transcendental aesthetic. In: Guyer P. (ed) The Cambridge companion to Kant. Cambridge University Press, Cambridge, pp 62–100CrossRefGoogle Scholar
  15. Shabel L. (1998) Kant on the ‘symbolic construction’ of mathematical concepts. Studies in History and Philosophy of Science 29: 589–621CrossRefGoogle Scholar
  16. Shabel L. (2003) Mathematics in Kant’s critical philosophy: Reflections on mathematical practice. New York and London, RoutledgeGoogle Scholar
  17. Shabel L. (2006) Kant’s philosophy of mathematics. In: Guyer P. (ed) The Cambridge companion to Kant and modern philosophy. Cambridge University Press, Cambridge, pp 94–128CrossRefGoogle Scholar
  18. Sutherland D. (2004) The role of magnitude in Kant’s critical philosophy. Canadian Journal of Philosophy 34: 411–442Google Scholar
  19. Sutherland D. (2006) Kant on arithmetic, algebra, and the theory of proportion. Journal of the History of Philosophy 44: 33–558CrossRefGoogle Scholar
  20. Tarski A. (1959) What is elementary geometry?. In: Henkin L., Suppes P., Tarski A. (eds) The Axiomatic method, with special reference to geometry and physics. North-Holland, Amsterdam, pp 16–29Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations