Synthese

, Volume 186, Issue 2, pp 447–474 | Cite as

Bayesian chance

Article
  • 161 Downloads

Abstract

This paper explores how the Bayesian program benefits from allowing for objective chance as well as subjective degree of belief. It applies David Lewis’s Principal Principle and David Christensen’s principle of informed preference to defend Howard Raiffa’s appeal to preferences between reference lotteries and scaling lotteries to represent degrees of belief. It goes on to outline the role of objective lotteries in an application of rationality axioms equivalent to the existence of a utility assignment to represent preferences in Savage’s famous omelet example of a rational choice problem. An example motivating causal decision theory illustrates the need for representing subjunctive dependencies to do justice to intuitive examples where epistemic and causal independence come apart. We argue to extend Lewis’s account of chance as a guide to epistemic probability to include De Finetti’s convergence results. We explore Diachronic Dutch book arguments as illustrating commitments for treating transitions as learning experiences. Finally, we explore implications for Martingale convergence results for motivating commitment to objective chances.

Keywords

Objective chance Subjective degree of belief Reference lotteries Utility axioms Dutch books Martingale convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anscombe F. J., Aumann R. J. (1963) A definition of subjective probability. Annals of Mathematical Statistics 34(1): 199–205CrossRefGoogle Scholar
  2. Arntzenius F., Hall N. (2003) On what we know about chance. British Journal for the Philosophy of Science 54: 171–179CrossRefGoogle Scholar
  3. Christensen D. (2001) Preference based arguments for probabilism. Philosophy of Science 68: 356–376CrossRefGoogle Scholar
  4. De Finetti, B. (1937). Foresight: Its logical laws, its subjective (Kyburg, Henry E. Jr., sources Trans., In Kyburg & Smokler (Eds.), 1964, pp. 93–158).Google Scholar
  5. Ewens W. J. (2004) Mathematical population genetics. Springer, New YorkGoogle Scholar
  6. Freedman D., Pisani R., Purvis R. (1998) Statistics (3rd ed.). W. W. Norton & Company, New YorkGoogle Scholar
  7. Gale J. S. (1990) Theoretical population genetics. Unwin Hyman, LondonCrossRefGoogle Scholar
  8. Gibbard A., Harper W. (1980) Counterfactuals and Two Kinds of Expected Utility. In: Harper W., Stalnaker R., Pearce G. (eds) Ifs. D. Reidel Publishing Company, Dordrecht, pp 153–190Google Scholar
  9. Harper W., Kyburg H. E. Jr. (1968) The Jones case. British Journal for the Philosophy of Science 19: 247–258CrossRefGoogle Scholar
  10. Harper, W., Wheeler, G. (eds) (2007) Probability and inference: Essays in honour of Henry E. Jr. Kings College Publications, KyburgGoogle Scholar
  11. Harper, W. L., Stalnaker, R., & Pearce, G. (1981). Ifs: conditionals, belief, decision, chance, and time. The University of Western Ontario series in philosophy of science, (Vol. 15). Hingham, MA: Kluwer.Google Scholar
  12. Jaynes E. T. (1976) Confidence intervals vs Bayesian intervals. In: Harper W., Hooker C. A. (eds) Foundations of probability theory, statistical inference, and statistical theories of science. D. Reidel Publishing Company, Dordrecht, pp 175–257Google Scholar
  13. Jeffery Richard C. (1965) The logic of decision. McGraw-Hill, New YorkGoogle Scholar
  14. Kassen R., Bataillion T. (2006) The distribution of fitness effects among beneficial mutations prior to selection in experimental populations of bacteria. Nature Genetics 38: 484–488CrossRefGoogle Scholar
  15. Kyburg H. E. Jr. (1974) Propensities and probabilities. British Journal for the Philosophy of Science 25: 358–375CrossRefGoogle Scholar
  16. Kyburg H. E. Jr. (1981) Principle investigation. Journal of Philosophy 78: 772–778CrossRefGoogle Scholar
  17. Kyburg, H. E. Jr., Smokler, H. E. (eds) (1964) Studies in subjective probability. Wiley, New YorkGoogle Scholar
  18. Levi I. (1983) Review of studies in inductive logic and probability. In: Jeffrey R.C. (eds) 1980’ The philosophical review (Vol. 92, No. 1). University of California Press, Berkeley, pp 116–121Google Scholar
  19. Levi I. (1990) Chance. Philosophical Topics 18(2): 117–149Google Scholar
  20. Lewis D. (1986) Philosophical papers. Oxford University Press, OxfordGoogle Scholar
  21. Lewis D. (1994) Humean supervenience debugged. Mind 103: 473–490CrossRefGoogle Scholar
  22. Luce R.D., Raiffa H. (1967) Games and decision. Wiley, New YorkGoogle Scholar
  23. Perfeito L., Fernandes L., Mota C., Gordo I. (2007) Adaptive mutations in bacteria: High rate and small effects. Science 317(5839): 813–815CrossRefGoogle Scholar
  24. Quattrone G. A., Tversky A. (1984) Causal versus diagnostic contingencies: On self deception and on the Voter’s illusion. Journal of Personality and Social Psychology 46(2): 237–248CrossRefGoogle Scholar
  25. Raiffa H. (1968) Decision analysis: Introductory lectures on choices under uncertainty. Addion-Wesley Publishing Company, Menlo ParkGoogle Scholar
  26. Ramsey, F. P. (1926). Truth and probability. In H. E. Kyburg & H. E. Smokler (Eds.) (Reprinted 1964, pp. 63–92).Google Scholar
  27. Rokyta D. R., Joyce P., Caudle S. B., Wichman H. A. (2005) An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nature Genetics 37: 441–444CrossRefGoogle Scholar
  28. Savage, L. J. (1954/1972). The foundations of statistics. New York: Dover Publications Inc.Google Scholar
  29. Shafir E., Tversky A. (1992) Thinking through uncertainty: Nonconsequential reasoning and choice. Cognitive Psychology 24: 449–474CrossRefGoogle Scholar
  30. Sklar L. (1993) Physics and chance: Philosophical issues in the foundations of statistical mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Skyrms B. (1980) Causal necessity. Yale University Press, New HavenGoogle Scholar
  32. Skyrms B. (1984) Pragmatics and empiricism. Yale University Press, New HavenGoogle Scholar
  33. Skyrms B. (1997) The structure of radical probabilism. Erkenntnis 45: 285–297Google Scholar
  34. Stalnaker, R. (1972). Letter to David Lewis. In W. Harper, R. Stalnaker, & G. Pearce (Eds.), (1980). Ifs, pp. 151–152.Google Scholar
  35. Teller P. (1976) Conditionalization, observation, and change of preference. In: Harper W., Hooker C.A. (eds) Foundations of probability theory, statistical inference, and statistical theories of science (Vol. I). D. Reidel Publishing Company, Dordrecht, pp 205–253Google Scholar
  36. Tversky A., Shafir E. (1992) The disjunction effect in choice under uncertainty. Psychological Science 3(5): 305–309CrossRefGoogle Scholar
  37. Uffink, Jos (2006) Compendium of the foundations of classical statistical physics. Pitt Phil Sci Web site. http://philsci-archive.pitt.edu/archive/00002691/.
  38. van Fraassen B. (1984) Belief and the Will. Journal of Philosophy 81: 235–256CrossRefGoogle Scholar
  39. van Fraassen B. (1995) Belief and the problem of Ulysses and the Sirens. Philosophical Studies 77: 7–37CrossRefGoogle Scholar
  40. van Fraassen B. (1999) Conditionalization, a new argument for. Topoi 18: 93–96CrossRefGoogle Scholar
  41. von Neumann J., Morgenstern O. (1947) Theory of games and economic behavior, second edition. Wiley, New YorkGoogle Scholar
  42. Wilson M. (2006) Wandering significance: An essay on conceptual behavior. Clarendon Press, OxfordCrossRefGoogle Scholar
  43. Zabell S. L. (2002) It All adds up: The dynamic coherence of radical probabilism. PSA00: Philosophy of Science 69(Suppl 3): S99–S103Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • William Harper
    • 1
  • Sheldon J. Chow
    • 1
  • Gemma Murray
    • 1
  1. 1.The University of Western OntarioLondonCanada

Personalised recommendations