Advertisement

Synthese

, Volume 186, Issue 2, pp 443–446 | Cite as

Introduction

  • Gregory Wheeler
Article
  • 84 Downloads

Keywords

Rational Acceptance Choice Function Dutch Book Causal Decision Theory Imprecise Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haenni R., Romeijn J.-W., Wheeler G., Williamson J. (2011) Probabilistic logics and probabilistic networks. Springer, The Synthese Library, DordrechtCrossRefGoogle Scholar
  2. Harper, W., Wheeler, G. (eds) (2007) Probability and inference: Essays in honour of Henry E Kyburg, Jr. College Publications, LondonGoogle Scholar
  3. Hawthorne J., Makinson D. (2007) The quantitative/qualitative watershed for rules of uncertain inference. Studia Logica 86: 249–299CrossRefGoogle Scholar
  4. Keynes J. M. (1921) A treaty on probability. Cambridge University Press, CambridgeGoogle Scholar
  5. Krantz D., Luce R., Suppes P., Tversky A. (1971) Foundations of measurement: Additive and polynomial representations. Academic Press, New YorkGoogle Scholar
  6. Kyburg H. E. Jr. (1987) Bayesian and non-Bayesian evidential updating. Artificial Intelligence 31(3): 271–293CrossRefGoogle Scholar
  7. Kyburg H. E. Jr. (1990) Science and reason. Oxford University Press, OxfordGoogle Scholar
  8. Kyburg H. E. Jr., Pittarelli M. (1996) Set-based Bayesianism. IEEE Transactions on Systems. Man and Cybernetics A. 26(3): 324–339CrossRefGoogle Scholar
  9. Levi I. (1980) Enterprise of knowledge. MIT Press, Cambridge, MAGoogle Scholar
  10. Ramsey F. P. (1922) Mr. Keynes on probability. The Cambridge Magazine 11(1): 3–5Google Scholar
  11. Scott D., Suppes P. (1958) Foundational aspects of theories of measurement. Journal of Symbolic Logic 23: 113–128CrossRefGoogle Scholar
  12. Seidenfeld T. (1992) R. A. Fisher’s fiducial argument and Bayes’ theorem. Statistical Science 7: 358–368CrossRefGoogle Scholar
  13. Seidenfeld T., Schervish M., Kadane J. (2010) Coherent choice functions under uncertainty. Synthese 172(1): 157–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.New University of LisbonLisboaPortugal

Personalised recommendations