Synthese

, Volume 186, Issue 1, pp 387–409 | Cite as

Diagrams as sketches

Article

Abstract

This article puts forward the notion of “evolving diagram” as an important case of mathematical diagram. An evolving diagram combines, through a dynamic graphical enrichment, the representation of an object and the representation of a piece of reasoning based on the representation of that object. Evolving diagrams can be illustrated in particular with category-theoretic diagrams (hereafter “diagrams*”) in the context of “sketch theory,” a branch of modern category theory. It is argued that sketch theory provides a diagrammatic* theory of diagrams*, that it helps to overcome the rivalry between set theory and category theory as a general semantical framework, and that it suggests a more flexible understanding of the opposition between formal proofs and diagrammatic reasoning. Thus, the aim of the paper is twofold. First, it claims that diagrams* provide a clear example of evolving diagrams, and shed light on them as a general phenomenon. Second, in return, it uses sketches, understood as evolving diagrams, to show how diagrams* in general should be re-evaluated positively.

Keywords

Mathematical diagrams Pictorialism Categorical diagrams Sketch theory Formal proof Semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek J., Rosický J. (1994) Locally presentable and accessible categories, volume 189 of Lecture notes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Brown J. R. (2005) Naturalism, pictures, and platonic intuitions. In: Mancosu P., Jørgensen K.F., Pedersen S.A. (eds) Visualization, explanation and reasoning styles in mathematics (Chap. 3, pp. 57–74). Berlin: Springer.CrossRefGoogle Scholar
  3. Coppey L. (1992) Esquisses et types. Diagrammes 27: LC1–LC33Google Scholar
  4. Ehresmann C. (1968) Esquisses et types de structures algébriques. Bulletin of the Polytechnic Institute of Iasi XIV: 1–14Google Scholar
  5. Foltz F. (1969) Sur la catégorie des foncteurs dominés. Cahiers de topologie et géométrie différentielle catégoriques XI(2): 101–130Google Scholar
  6. Kennison J. F. (1968) On limit-preserving functors. Illinois Journal of Mathematics 12: 616–619Google Scholar
  7. Lambek J., Scott P. (1999) Introduction to higher order categorical logic, volume 7 of Cambridge studies in advanced mathematics. Cambridge University Press, CambridgeGoogle Scholar
  8. Lawvere, F. W. (1963). Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. PhD thesis, Columbia University.Google Scholar
  9. Makkai M., Paré R. (1989) Accessible categories: The foundations of categorical model theory, volume 104 of Contemporary mathematics. American Mathematical Society, ProvidenceCrossRefGoogle Scholar
  10. Osborne M. S. (2000) Homological algebra. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Département de Philosophie (IREPH)Université Paris OuestNanterreFrance
  2. 2.SPHERE (UMR 7219), Université Paris-DiderotParisFrance

Personalised recommendations