Advertisement

Synthese

, Volume 186, Issue 1, pp 315–370 | Cite as

Local axioms in disguise: Hilbert on Minkowski diagrams

  • Ivahn Smadja
Article

Abstract

While claiming that diagrams can only be admitted as a method of strict proof if the underlying axioms are precisely known and explicitly spelled out, Hilbert praised Minkowski’s Geometry of Numbers and his diagram-based reasoning as a specimen of an arithmetical theory operating “rigorously” with geometrical concepts and signs. In this connection, in the first phase of his foundational views on the axiomatic method, Hilbert also held that diagrams are to be thought of as “drawn formulas”, and formulas as “written diagrams”, thus suggesting that the former encapsulate propositional information which can be extracted and translated into formulas. In the case of Minkowski diagrams, local geometrical axioms were actually being produced, starting with the diagrams, by a process that was both constrained and fostered by the requirement, brought about by the axiomatic method itself, that geometry ought to be made independent of analysis. This paper aims at making a twofold point. On the one hand, it shows that Minkowski’s diagrammatic methods in number theory prompted Hilbert’s axiomatic investigations into the notion of a straight line as the shortest distance between two points, which start from his earlier work focused on the role of the triangle inequality property in the foundations of geometry, and lead up to his formulation of the 1900 Fourth Problem. On the other hand, it purports to make clear how Hilbert’s assessment of Minkowski’s diagram-based reasoning in number theory both raises and illuminates conceptual compatibility concerns that were crucial to his philosophy of mathematics.

Keywords

Hilbert Minkowski Geometry of numbers Axiomatization Conceptual compatibility Foundations of geometry Hilbert’s fourth problem Convexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin E. (1957) Geometric algebra. Wiley Interscience, New YorkGoogle Scholar
  2. Bernays, P. (1922). Die Bedeutungs Hilberts für die Philosophie der Mathematik, Die Naturwissenschaften, 10, 93–99. (English translation in Mancosu, P. (1998). From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920s (pp. 189–197). Oxford: Oxford University Press).Google Scholar
  3. Bernays, P. (1946). Quelques points de vue concernant le problème de l’évidence. Synthese, 5, 321–326. (German translation by Bernays himself in Bernays, P. (1976). Abhandlungen zur Philosophie der Mathematik (pp. 85–91). Darmstadt: Wissenschaftliche Buchgesellschaft).Google Scholar
  4. Bernays P. (1976) Abhandlungen zur Philosophie der Mathematik. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  5. Blichfeldt H. F. (1914) A new principle in the geometry of numbers, with some applications. Transactions of the American Society 15: 227–235CrossRefGoogle Scholar
  6. Blumenthal, L. (1961). A modern view of geometry. San Francisco: W.H. Freeman and Company. (Dover reprint, 1980).Google Scholar
  7. Brunn, H. (1887). Ueber Ovale und Eiflächen, Inaugural-Dissertation. F. Straub, Munich.Google Scholar
  8. Busemann, H. (1976). Desarguesian spaces. In F. Bowder (Ed.), Mathematical developments arising from Hilbert’s problems, Proceedings of symposia in pure mathematics (Vol. 78, pp. 131–141). American Mathematical Society.Google Scholar
  9. Cerroni C. (2004) Non-Desarguian geometries and the foundations of geometry from David Hilbert to Ruth Moufang. Historia Mathematica 31: 320–336CrossRefGoogle Scholar
  10. Corry L. (2004) David Hilbert and the axiomatization of physics (1898–1918). From Grundlagen der Geometrie to Grundlagen der Physik. Kluwer, DordrechtGoogle Scholar
  11. Dieudonné, J. (1962). Les détérminants sur un corps non commutatif. Bull. Soc. Math de Prance, 71 (1943) 27–45.Google Scholar
  12. Edwards H. (1974) Riemann’s zeta function. Academic Press, New YorkGoogle Scholar
  13. Einstein A. (1998) Collected papers. Vol. 8A: The Berlin years: Correspondence, 1914–1917. Princeton University Press, PrincetonGoogle Scholar
  14. Gardner R. J. (2002) The Brunn-Minkowski inequality. The Bulletin of the American Mathematical Society 3: 355–405CrossRefGoogle Scholar
  15. Gauss, C. F. (1827a). Anzeige der Disquisitiones generales supra superficies curvas. In Werke, IV, 1873 (pp. 341–346). Göttingen.Google Scholar
  16. Gauss, C. F. (1827b). Disquisitiones generales supra superficies curvas. In Werke, IV, 1873 (pp. 217–258). Göttingen.Google Scholar
  17. Glock E. (1962) Die Orientierungsfunktionen eines affinen Raumes. Mathematische Zeitschrift 78: 319–360CrossRefGoogle Scholar
  18. Goldman J. R. (1998) The queen of mathematics. A historically motivated guide to number theory. A K Peters, Wellesley, MAGoogle Scholar
  19. Hallett M. (1990) Physicalism, reductionism and Hilbert. In: Irvine A.D. (Ed.) Physicalism in mathematics. Reidel, Dordrecht, pp 183–257Google Scholar
  20. Hallett M. (1994) Hilbert’s axiomatic method and the laws of thought. In: George A. (Ed.) Mathematics and mind. Oxford University Press, New York, pp 158–200Google Scholar
  21. Hallett, M. (1995). Hilbert and logic. In Québec Studies in the Philosophy of Science, Part 1: Logic, Mathematics, Physics and the History of Science, Boston Studies in the Philosophy of Science (Vol. 177, pp. 135–187). Kluwer: Dordrecht.Google Scholar
  22. Hallett M., Majer U. (2004) David Hilbert’s lectures on the foundations of geometry, 1891–1902. Springer, HeidelbergGoogle Scholar
  23. Hallett M. (2008) Reflections on the purity of method in Hilbert’s Grundlagen der Geometrie. In: Mancosu P. (Ed.) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 278–358Google Scholar
  24. Hamel, G. (1901). Über die Geometrien, in denen die Graden die Kürzesten sind, Dissertation, Göttingen.Google Scholar
  25. Hamel G. (1903) Über die Geometrien, in denen die Graden die Kürzesten sind, Dissertation, Göttingen. Mathematische Annalen 57: 231–264CrossRefGoogle Scholar
  26. Hermite, C. (1850). Lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, Journal für die reine und angewandte Mathematik, 40, 261–278. (Reprinted in Hermite, C. (1905). Œuvres de Charles Hermite (pp. 100–121). Paris: Gauthier-Villars, tome I).Google Scholar
  27. Heyting A. (1963) Axiomatic projective geometry. North-Holland Publishing Company, GroningenGoogle Scholar
  28. Hilbert, D. (*1893/1894). Grundlagen der Geometrie, Lecture notes for a course to have been held in the Wintersemester of 1893/1894 at the Univeristy of Königsberg, Niedersächsische Staats- und Universitätbibliothek, Göttingen. (First published in Hallett, M., & Majer, U. (2004). David Hilbert’s lectures on the foundations of geometry, 1891–1902 (pp. 72–144). Springer: Heidelberg).Google Scholar
  29. Hilbert, D. (1895). Über die gerade Linie als kürzeste Verbindung zweier Punkte. Mathematische Annalen, 46, 91–96. (Republished as Anhang I in Hilbert, D. (1903). Grundlagen der Geometrie. Zweite Auflage. Leipzig and Berlin: Teubner).Google Scholar
  30. Hilbert, D. (1897). Die Theorie der algebraischen Zahlkörper [Zahlbericht]. Jahresbericht der deutschen Mathematiker-Vereinigung, 4, 175–546. (Reprinted in Hilbert, D. (1932). Gesammelte Abhandlungen. vol. I (pp. 63–363). Berlin: Springer. Translated from the German by Adamson, I. T. (1998). The theory of algebraic number fields. Springer).Google Scholar
  31. Hilbert, D. (*1898/1899). Grundlagen der Euklidischen Geometrie, Lecture notes for a course held in the Wintersemester of 1898/1899 at the Georg-August Univeristät, Göttingen. Niedersächsische Staats- und Universitätbibliothek, Göttingen and the Mathematisches Institut of the Georg-August Univeristät. (First published in Hallett, M., & Majer, U. (2004). David Hilbert’s lectures on the foundations of geometry, 1891–1902 (pp. 221–301). Springer: Heidelberg).Google Scholar
  32. Hilbert, D. (*1899). `Elemente der Euklidischen Geometrie’, Ausarbeitung by Hans Schaper of the lecture notes (Lecture notes for a course held in the Wintersemester of 1898/1899 at the Georg-August Univeristät, Göttingen). In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, Leipzig, Teubner. Niedersächsische Staats- und Universitätbibliothek, Göttingen and the Mathematisches Institut of the Georg-August Univeristät. (First published in Hallett, M., & Majer, U. (2004). David Hilbert’s lectures on the foundations of geometry, 1891–1902 (pp. 302–406). Springer: Heidelberg).Google Scholar
  33. Hilbert, D. (1899). Grundlagen der Geometrie, In Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, Leipzig, Teubner. (Republished as Hallett, M., & Majer, U. (2004). Chapter 5. David Hilbert’s lectures on the foundations of geometry, 1891–1902. Springer: Heidelberg).Google Scholar
  34. Hilbert D. (1900a) Über den Zahlbegriff. Jahresbericht der deutschen Mathematiker-Vereinigung 8: 180–184Google Scholar
  35. Hilbert, D. (1900b). Mathematische Probleme, Gesammelte Abhandlungen, vol. III, Berlin, Springer, 1935, pp. 290-329. English translation by Mary Winston Newson, Mathematical Problems, Bulletin of the American Mathematical Society 37, 4, pp. 407-436. French translation by L. Laugel in Compte-rendu du Deuxième Congrès International des Mathématiciens, Paris, Gauthier-Villars, 1902.Google Scholar
  36. Hilbert, D. (1902/1903). Über den Satz von der Gleichheit der Basiswinkel im gleichschenklichen Dreieck. In Proceedings of the London Mathematical Society, 35 (pp. 50–67). (Republished as Anhang II in Hilbert, D. (1903). Grundlagen der Geometrie. Zweite Auflage. Leipzig and Berlin: Teubner.Google Scholar
  37. Hilbert, D. (*1905). Logische Principien des mathematischen Denkens, Lecture notes for a course to have been held in the Sommersemester of 1905 at the Georg-August Univeristät, Göttingen. Library of the Mathematisches Institut. To appear in Ewald, W., Hallett, M., & Sieg, W. David Hilbert’s lectures on the foundations of logic and arithmetic, 1894–1917, Heidelberg, Berlin, New York, Springer. Hilbert’s lectures on the foundations of mathematics and physics, Vol. II.Google Scholar
  38. Hilbert, D. (1909). Gedächtnisrede auf H. Minkowski, Nachrichten von der K. Gesellschaft der Wiss. zu Göttingen, (Reprinted in Minkowski, H. (1911). Gesammelte Abhandlungen (pp. V–XXXI). Teubner: Leipzig).Google Scholar
  39. Hilbert, D. (*1910). Elemente und Prinzipienfragen der Mathematik, Somersemester 1910. Ausgearbeitet von Richard Courant. Mathematisches Institut, Georg-August Universität, Göttingen.Google Scholar
  40. Hilbert, D. (1915). Die Grundlagen der Physik. (Erste Mitteilung), Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, pp. 395–407. (Reprinted in Sauer, T., & Majer, U. (2009). David Hilbert’s lectures on the foundations of physics, 1915–1927. Relativity, quantum theory and epistemology (Chap. I, pp. 28–46). Heidelberg: Springer).Google Scholar
  41. Hilbert, D. (1917). Die Grundlagen der Physik. (Zweite Mitteilung), Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, 53–76. (Reprinted in Sauer, T., & Majer, U. (2009). David Hilbert’s lectures on the foundations of physics, 1915–1927. Relativity, quantum theory and epistemology (Chap. I, pp. 47–72). Heidelberg: Springer).Google Scholar
  42. Hilbert D. (1918) Axiomatisches Denken. Mathematische Annalen 78: 405–415CrossRefGoogle Scholar
  43. Hilbert, D. (*1919/1920). Natur und mathematishes Erkennen. Lecture notes by P. Bernays, MI. Rowe, D. (ed.), Birkhaüser, 1992.Google Scholar
  44. Hilbert, D. (1922). Neubegründung der Mathematik. Erste Mitteilung, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 1, pp. 157–177. (English translation in Mancosu, P. (1998). From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920s (pp. 198–214). Oxford: Oxford University Press).Google Scholar
  45. Hilbert D., Cohn-Vossen S. (1932) Anschauliche Geometrie. Springer, BerlinGoogle Scholar
  46. Hilbert D., Bernays P. (1934) Grundlagen der Geometrie I. Springer, BerlinGoogle Scholar
  47. Hlawka E., Schoißengeier J., Taschner R. (1991) Geometry and analytic number theory. Springer, New YorkCrossRefGoogle Scholar
  48. Jordan, C. (1892). Remarques sur les intégrales définies, Journal de mathématiques pures et appliquées, 4ème série, tome VIII, Fasc. I.Google Scholar
  49. Junkers W. (1966) Beziehungen zwischen mehrwertigen Ordnungsfunktionen und Inhaltsfunktionen auf Inzidenzstrukturen. Mathematische Zeitschrift 93: 216–240CrossRefGoogle Scholar
  50. Lesieur L. (1958) Théorie algébrique de l’orientation et de la mesure des simplexes. Journal de mathématiques pures et appliquées 9(37): 245–264Google Scholar
  51. Lesieur L. (1966) Sur la mesure des triangles en géométrie affine plane. Mathematische Zeitschrift 93: 334–344CrossRefGoogle Scholar
  52. Mach, E. (1883/1919). The science of mechanics. A critical and historical account of its development. (English Translation by T. J. McCormack, Chicago & London, Open Court).Google Scholar
  53. Majer U., Sauer T. (2005) Hilbert’s “World’s Equations” and his vision of a unified science. In: Kox A. J., Eisenstaed J. (eds) The universe of general relativity. Birkäuser, BostonGoogle Scholar
  54. Minkowski, H. (1891a). Über die positive quadratischen Formen und über kettenbruchähnliche Algorithmen. (Reprinted in Minkowski, H. (1911). Gesammelte Abhandlungen (Vol. I, pp. 243–260). Teubner: Leipzig).Google Scholar
  55. Minkowski, H. (1891b). Zur Geometrie der Zahlen, Jahresbericht der DMV, I, 64–65(1892). (Reprinted in Minkowski, H. (1911). Gesammelte Abhandlungen (Vol. I, pp. 264–265). Teubner: Leipzig).Google Scholar
  56. Minkowski, H. (1893). Über Eigenschaften von ganzen Zahlen, die durch räumliche Anschauung erschlossen sind, Mathematical Papers read at the international Mathematical Congress held in connection with the world’s Columbian Exposition Chicago. (Reprinted in Minkowski, H. (1911). Gesammelte Abhandlungen (Vol. I, pp. 271–277). Teubner: Leipzig).Google Scholar
  57. Minkowski, H. (1896). Geometrie der Zahlen. Leipzig: Teubner. (Reprinted New York: Chelsea, 1953).Google Scholar
  58. Minkowski, H. (1901). Ueber die Begriffe Länge, Oberfläche und Volumen, Jahresbericht der deutschen Mathematiker-Vereinigung, 9, 115–121. (Reprinted in Minkowski, H. (1911). Gesammelte Abhandlungen (Vol. II, pp. 122–127). Teubner: Leipzig).Google Scholar
  59. Minkowski, H. (1904). Zur Geometrie der Zahlen, Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, 1904. (Reprinted in Minkowski, H. (1911). Gesammelte Abhandlungen (Vol. II, pp. 43–52). Teubner: Leipzig).Google Scholar
  60. Minkowski, H. (1911). Gesammelte Abhandlungen, Vol. I–II. Teubner: Leipzig. (Reprinted New York: Chelsea, 1967).Google Scholar
  61. Pambuccian V. (1998) Zur Existenz gleichseitiger Dreiecke in H-Ebenen. Journal of Geometry 63: 147–153CrossRefGoogle Scholar
  62. Pambuccian, V. (2010). The axiomatics of ordered geometry. I. Ordered incidence spaces, Expositiones Math. (2010) doi: 10.1016/j.exmath.2010.09.004.
  63. Pickert G. (1955) Projektive Ebenen. Springer, BerlinGoogle Scholar
  64. Pogorelov, A. V. (1979). Hilbert’s Fourth Problem, translated by R. A. Silverman, New York, Wiley.Google Scholar
  65. Riemann, B. (1859). Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. (English translation by H. Edwards in Riemann’s zeta function. Appendix, pp. 299–305. New York: Academic Press).Google Scholar
  66. Scharlau W., Opolka H. (1985) From Fermat to Minkowski. Lectures on the theory of numbers and its historical development. Springer, New YorkGoogle Scholar
  67. Schneider, R. (1993). Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications (Vol. 44). Cambridge: Cambridge University Press.Google Scholar
  68. Sieg, W. (2009). Searching for Proofs (and uncovering capacities of the mathematical mind) (forthcoming)Google Scholar
  69. Smadja I. (2010) Tuning up mind’s pattern to Nature’s own idea: Eddinton’s early twenties case for variational derivatives. Studies in History and Philosophy of Modern Physics 41: 128–145CrossRefGoogle Scholar
  70. Sommer, J. (1899/1900). Hilbert’s Foundations of Geometry. Review of David Hilbert: Grundlagen der Geometrie, Bulletin of the American Mathematical Society, 6, pp. 287–299.Google Scholar
  71. Sperner E. (1949) Die Ordnungsfunktionen einer Geometrie. Mathematische Annalen 121: 107–130CrossRefGoogle Scholar
  72. Strommer J. (1973) Über die Kreisaxiome. Periodica Mathematica Hungarica 4: 3–16CrossRefGoogle Scholar
  73. Steinitz E. (1910) algebraische Theorie der Körper. Journal für die reine und angewandte Mathematik 137: 167–309Google Scholar
  74. Szmielew W. (1983) From affine to Euclidean geometry: An axiomatic approach. Reidel-Kluwer, DordrechtGoogle Scholar
  75. Tarski A. (1959) What is elementary geometry? In: Henkin L., Suppes P., Tarski A. (eds) The axiomatic method: With special reference to geometry and physics. North Holland, Amsterdam, pp 16–29Google Scholar
  76. Thompson, A. C. (1996). Minkowski geometry (Vol. 63), Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press.Google Scholar
  77. van der Waerden B.L. (1973) Die Galois-Theorie von Heinrich Weber bis Emil Artin. Archive for History of Exact Sciences 9: 240–248CrossRefGoogle Scholar
  78. Weber H. (1893) Die allgemeine Grundlagen der Galois’schen Gleichungtheorie. Mathematische Annalen 43: 521–549CrossRefGoogle Scholar
  79. Weyl H. (1942) On geometry of numbers. Proceedings of the London Mathematical Society 47: 268–289CrossRefGoogle Scholar
  80. Zach R. (1999) Completeness before post: Bernays, Hilbert, and the development of propositional logic. The Bulletin of Symbolic Logic 5(3): 331–366CrossRefGoogle Scholar
  81. Zassenhaus H. J. (1975) On the Minkowski-Hilbert dialogue on mathematization. Canadian Mathematical Bulletin 18(3): 443–461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire SPHERE, UMR 7219 CNRSParis Cedex 13France

Personalised recommendations