, Volume 185, Issue 3, pp 467–499 | Cite as

Physico-mathematics and the search for causes in Descartes’ optics—1619–1637

  • John A. SchusterEmail author


One of the chief concerns of the young Descartes was with what he, and others, termed “physico-mathematics”. This signalled a questioning of the Scholastic Aristotelian view of the mixed mathematical sciences as subordinate to natural philosophy, non explanatory, and merely instrumental. Somehow, the mixed mathematical disciplines were now to become intimately related to natural philosophical issues of matter and cause. That is, they were to become more ’physicalised’, more closely intertwined with natural philosophising, regardless of which species of natural philosophy one advocated. A curious, short-lived yet portentous epistemological conceit lay at the core of Descartes’ physico-mathematics—the belief that solid geometrical results in the mixed mathematical sciences literally offered windows into the realm of natural philosophical causation—that in such cases one could literally “see the causes”. Optics took pride of place within Descartes’ physico-mathematics project, because he believed it offered unique possibilities for the successful vision of causes. This paper traces Descartes’ early physico-mathematical program in optics, its origins, pitfalls and its successes, which were crucial in providing Descartes resources for his later work in systematic natural philosophy. It explores how Descartes exploited his discovery of the law of refraction of light—an achievement well within the bounds of traditional mixed mathematical optics—in order to derive—in the manner of physico-mathematics—causal knowledge about light, and indeed insight about the principles of a “dynamics” that would provide the laws of corpuscular motion and tendency to motion in his natural philosophical system.


Isaac Beeckman Descartes’ optics Descartes’ dynamics Descartes’ Dioptrique Hydrostatics Law of refraction of light Mixed mathematics Physico-mathematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, C., & Tannery, P. (Eds.). (1974–1986). Oeuvres de Descartes, (2nd ed. 11 Vols.). Paris: Vrin.Google Scholar
  2. Beeckman, I. (1939–1953). In C. de Waard (Ed.), Journal tenu par Isaac Beeckman de 1604 à 1634 (4 Vols.). The Hague: Nijhoff.Google Scholar
  3. Bennet J. (1998) Practical geometry and operative knowledge. Configurations 6(2): 195–222CrossRefGoogle Scholar
  4. Bossha, J. (1908). Annexe note. Archives Neerlandaises des Sciences Exactes et Naturelles, ser 2 t. 13, xii–xiv.Google Scholar
  5. Buchdahl G. (1972) Methodological aspects of Kepler’s theory of refraction. Studies in the History and Philosophy of Science 3: 265–298CrossRefGoogle Scholar
  6. de Waard C. (1935–1936) Le manuscrit perdu de Snellius sur la refraction. Janus 39(40): 51–73Google Scholar
  7. Dear P. (1995) Discipline and experience: The mathematical way in the scientific revolution. Chicago University Press, ChicagoGoogle Scholar
  8. Gabbey A. (1980) Force and inertia in the seventeenth century: Descartes and Newton. In: Gaukroger S. (eds) Descartes: Philosophy, mathematics and physics. Harvester, Sussex, pp 230–320Google Scholar
  9. Gaukroger S. (1995) Descartes: An intellectual biography. Oxford University Press, OxfordGoogle Scholar
  10. Gaukroger S., Schuster J. A. (2002) The hydrostatic paradox and the origins of Cartesian dynamics. Studies in the History and Philosophy of Science 33: 535–572CrossRefGoogle Scholar
  11. Henry, C., & Tannery, P. (Eds.). (1891–1912). Oeuvres de Fermat. t. II. Paris: Gauthier-Villars.Google Scholar
  12. Kepler, J. (1938). In M. Caspar (Ed.), Gesammelte Werke. Munich.Google Scholar
  13. Knudsen O., Pedersen K. M. (1968) The link between “determination” and conservation of motion in Descartes’ dynamics. Centaurus 13: 183–186CrossRefGoogle Scholar
  14. Korteweg D.-J. (1896) Descartes et les manuscrits de Snellius d’après quelques documents nouveau. Révue de Métaphysique et de Morale 4: 489–501Google Scholar
  15. Kramer P. (1882) Descartes und das Brechungsgesetz des Lichtes. Abhandlungen zur Geschichte der Mathematischer (Natur) Wissenschaften 4: 235–278Google Scholar
  16. Lohne J. (1959) Thomas Harriot (1560–1621). The Tycho Brahe of optics. Centaurus 6: 113–121CrossRefGoogle Scholar
  17. Lohne J. (1963) Zur Geschichte des Brechungsgesetzes. Sudhoffs Archiv 47: 152–172Google Scholar
  18. Mahoney M. (1973) The mathematical career of Pierre de Fermat 1601–1665. Princeton University Press, PrincetonGoogle Scholar
  19. McLaughlin P. (2000) Force determination and impact. In: Gaukroger S., Schuster J. A., Sutton J. (eds) Descartes’ natural philosophy. Routledge, London, pp 81–112Google Scholar
  20. Mersenne, M. (1932–1988). In C. de Waard, R. Pintard, B. Rochot, & A. Baelieu (Eds.), Correspondence du P. Marin Mersenne (17 Vols.). Paris: Centre National de la Recherche Scientifique.Google Scholar
  21. Milhaud, G. (1921). Descartes savant. Paris: Felix Alcan.Google Scholar
  22. Mouy, P. (1934). Le développement de la physique Cartésienne. Paris: Vrin.Google Scholar
  23. Prendergast T. L. (1975) Motion, action and tendency in Descartes’ physics. Journal of the History of Philosophy 13: 453–462Google Scholar
  24. Sabra A. I. (1967) Theories of light from Descartes to Newton. Oldbourne, LondonGoogle Scholar
  25. Schuster J. A. (1980) Descartes’ mathesis universalis: 1618–1628. In: Gaukroger S. W. (eds) Descartes: Philosophy, mathematics and physics. Harvester, Brighton, pp 41–96Google Scholar
  26. Schuster J. A. (1986) Cartesian method as mythic speech: A diachronic and structural analysis. In: Schuster J. A., Yeo R. (eds) The politics and rhetoric of scientific method: Historical studies. Reidel, Dordrecht, pp 33–95Google Scholar
  27. Schuster J. A. (1993) Whatever should we do with Cartesian method: Reclaiming Descartes for the history of science. In: Voss S. (eds) Essays on the philosophy and science of René Descartes. Oxford University Press, New York, pp 195–223CrossRefGoogle Scholar
  28. Schuster J. A. (2000) Descartes’ Opticien: The construction of the law of refraction and the manufacture of its physical rationales, 1618–29. In: Gaukroger S., Schuster J. A., Sutton J. (eds) Descartes’ natural philosophy. Routledge, London, pp 258–312Google Scholar
  29. Schuster J. A. (2002) L’Aristotelismo e le sue Alternative. In: Garber D. (eds) La Rivoluzione Scientifica. Instituto della Enciclopedia Italiana (in Italian), Rome, pp 337–357Google Scholar
  30. Schuster J. A. (2005) Descartes’ vortical celestial mechanics: A gambit in the natural philosophical contest of the early seventeenth century. In: Anstey P., Schuster J. (eds) The science of nature in the seventeenth century: Changing patterns of early modern natural philosophy. Springer, Dordrecht, pp 35–79Google Scholar
  31. Shea W. (1991) The magic of motion and numbers: The scientific career of René Descartes. Science History Publications, Canton MAGoogle Scholar
  32. Stevin, S. (1586). De Beghinselen des Waterwichts. In The principal works of Simon Stevin (Vol. 1, pp. 415–417). Leiden.Google Scholar
  33. Vollgraff J. A. (1913) Pierre de la Ramée (1515–1572) et Willebrord Snel van Royen (1580–1626). Janus 18: 595–625Google Scholar
  34. Vollgraff J. A. (1936) Snellius notes on the reflection and refraction of rays. Osiris 1: 718–725CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Unit for History and Philosophy of ScienceUniversity of SydneySydneyAustralia
  2. 2.Campion CollegeOld ToongabbieAustralia

Personalised recommendations