Advertisement

Synthese

, Volume 185, Issue 3, pp 429–466 | Cite as

Nature’s drawing: problems and resolutions in the mathematization of motion

  • Ofer Gal
  • Raz Chen-Morris
Article

Abstract

The mathematical nature of modern science is an outcome of a contingent historical process, whose most critical stages occurred in the seventeenth century. ‘The mathematization of nature’ (Koyré 1957, From the closed world to the infinite universe, 5) is commonly hailed as the great achievement of the ‘scientific revolution’, but for the agents affecting this development it was not a clear insight into the structure of the universe or into the proper way of studying it. Rather, it was a deliberate project of great intellectual promise, but fraught with excruciating technical challenges and unsettling epistemological conundrums. These required a radical change in the relations between mathematics, order and physical phenomena and the development of new practices of tracing and analyzing motion. This essay presents a series of discrete moments in this process. For mediaeval and Renaissance philosophers, mathematicians and painters, physical motion was the paradigm of change, hence of disorder, and ipso facto available to mathematical analysis only as idealized abstraction. Kepler and Galileo boldly reverted the traditional presumptions: for them, mathematical harmonies were embedded in creation; motion was the carrier of order; and the objects of mathematics were mathematical curves drawn by nature itself. Mathematics could thus be assigned an explanatory role in natural philosophy, capturing a new metaphysical entity: pure motion. Successive generations of natural philosophers from Descartes to Huygens and Hooke gradually relegated the need to legitimize the application of mathematics to natural phenomena and the blurring of natural and artificial this application relied on. Newton finally erased the distinction between nature’s and artificial mathematics altogether, equating all of geometry with mechanical practice.

Keywords

Alberti, Leon Batista Curves da Vinci, Leonardo Descartes, René Galilei, Galileo Geometry Geometrical machines Hooke, Robert Huygens, Christiaan Indivisibles Kepler, Johannes Light Mathematical diagrams Mechanics Motion Local Pure Newton, Isaac Optics Order Pendulum Perspectiva Physica Rota Aristotelis Spring Tartaglia, Niccolo Trajectories Traces Vacuum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti, L. B. (1972 [1435]). On painting and on sculpture: The Latin texts of de pictura and de statua (C. Grayson, Trans. and Ed.). London: Phaidon.Google Scholar
  2. Alpers S. (1984) The art of describing: Dutch art in the seventeenth century. The University of Chicago Press, ChicagoGoogle Scholar
  3. Bertoloni Meli D. (1992) Guidobaldo dal Monte and the Archimedean revival. Nuncius 7: 3–34CrossRefGoogle Scholar
  4. Bertoloni Meli D. (2006) Thinking with objects: The transformation of mechanics in the seventeenth century. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  5. Chen-Morris Raz D. (2001) Optics, imagination, and the construction of scientific observation in Kepler’s new science. The Monist 84.4: 453–486Google Scholar
  6. Chen-Morris Raz D. (2009) From emblems to diagrams: Kepler’s new pictorial language of scientific representation. Renaissance Quarterly 62: 134–170CrossRefGoogle Scholar
  7. Coelho, V. (eds) (1992) Music and science in the age of Galileo. Kluwer Aca̋demic Publishers, DordrechtGoogle Scholar
  8. Dascal M. (2000) Leibniz and epistemological diversity. In: Lamarra A., Palaia R. (eds) Unita e Molteplicita nel Pensiero Filosofico e Scientifico di Leibniz. Roma, Leo S. Olschki Editore, pp 15–37Google Scholar
  9. De Gandt F. (1995) Force and geometry in Newton’s principia. Princeton University Press, PrincetonGoogle Scholar
  10. Dear P. (1995) Discipline & experience: The mathematical way in the scientific revolution. University of Chicago Press, ChicagoGoogle Scholar
  11. Descartes, R. (1659–1661). Geometria, à Renato Des Cartes anno 1637 gallicè edita.... Amstelædami: Apud Ludovicum & Danielem Elzevirios.Google Scholar
  12. Descartes, R. (1824–1826). Oeuvres de Descartes. (V. Cousin., Ed.). Paris.Google Scholar
  13. Descartes R. (1983) Principles of philosophy (Principia philosophiæ, 1644) (V. R. Miller & R. P. Miller, Trans.). Reidel, DordrechtGoogle Scholar
  14. Descartes R. (1985) The philosophical writings of descartes (J. Cottingham, R. Stoothof, & D. Murdoch, Trans.). Cambridge University Press, CambridgeGoogle Scholar
  15. Drabkin I. E. (1950) Aristotle’s wheel: Notes on the history of a paradox. Osiris 9: 162–198CrossRefGoogle Scholar
  16. Drake S., Drabkin I. E. (1969) Mechanics in sixteen-century Italy. University of Wisconsin Press, MadisonGoogle Scholar
  17. Edgerton, S. (1984). Galileo, Florentine ‘disegno,’ and the ‘strange spottedness of the moon’. Art Journal (Fall 1984), 225–232.Google Scholar
  18. Feldhay R. (1995) Galileo and the church. Cambridge University Press, CambridgeGoogle Scholar
  19. Field J. V. (1988) Kepler’s geometrical cosmology. The Athlone Press, LondonGoogle Scholar
  20. Freedberg D. (2002) The Eye of the lynx: Galileo, his friends and the beginnings of modern natural history. University of Chicago Press, ChicagoGoogle Scholar
  21. Gal O. (2002) Meanest foundations and nobler superstructures: Hooke, Newton and the compounding of the celestiall motions of the planetts. Kluwer Academic Publishers, DordrechtGoogle Scholar
  22. Gal, O. (Forthcoming). From divine order to human approximation: Mathematics in Baroque science.Google Scholar
  23. Gal O., Chen-Morris R. D. (2005) The archaeology of the inverse square law. Part I. Metaphysical images and mathematical practices. History of Science 43(4): 391–414Google Scholar
  24. Gal O., Chen-Morris R. D. (2006) The archaeology of the inverse square law. Part II. The use and non-use of mathematics. History of Science 44(1): 49–68Google Scholar
  25. Gal O., Chen-Morris R.D. (2010) Empiricism without the senses: How the instrument replaced the eye. In: Wolfe C., Gal O. (eds) The body as object and instrument of knowledge: Embodied empiricism in early modern science. Springer Verlag, Dordrecht, pp 121–148CrossRefGoogle Scholar
  26. Gal, O., & Chen-Morris, R. D. (2010). Baroque optics and the disappearance of the observer: From Kepler’s optics to descartes’ doubt. Journal for the History of Ideas, 191–217.Google Scholar
  27. Galilei, G. (1699). Discursus et demonstrationes mathematicæ, circa duas novas scientias pertinentes ad mechanicam & motum localem.... Lugduni Batavorum: Apud Fredericum Haaring, et Davidem Severinum.Google Scholar
  28. Galilei G. (1953 [1632]). Dialogue concerning the two chief world systems—Ptolemaic and copernican (S. Drake, Trans.). Berkeley: University of California Press.Google Scholar
  29. Galilei, G. (1954 [1638]). Dialogues concerning two new sciences (H. Crew & A. de Silvio, Trans.). New York: Dover Publications.Google Scholar
  30. Galluzzi P. (1979) Momento: Studi Galileiani. Edizioni dell’Ateneo & Bizzarri, RomaGoogle Scholar
  31. Gaukroger S. (1995) Descartes: An intellectual biography. Clarendon Press, OxfordGoogle Scholar
  32. Hooke R. (1665) Micrographia. Jo. Martin and Jo. Allestry, LondonGoogle Scholar
  33. Hooke R. (1678) Lectures De potentia restitutiva or of spring. John Martin, LondonGoogle Scholar
  34. Huygens, C. (1888–1950). Oeuvres complètes. La Haye: Société Hollandaise des Sciences.Google Scholar
  35. Huygens, C. (1966). Horologium Oscilatorium. Paris, 1673. Facsimile reprint by Bruxelles: Culture et Civilisation.Google Scholar
  36. Huygens C. (1986) The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks (Horologium Oscilatorium, 1673) (R. J. Blackwell, Trans.). Iowa State University Press, AmesGoogle Scholar
  37. Jones M. (2006) The good life in the scientific revolution: Descartes, Pascal, Leibniz and the cultivation of virtue. University of Chicago Press, ChicagoGoogle Scholar
  38. Kemp M. (1981) Leonardo da Vinci: the marvellous works of nature and man. Harvard University Press, Cambridge, MAGoogle Scholar
  39. Kepler, J. (1966 [1611]). A new year’s gift, or on the six-cornered snowflake (C. Hardie, Ed. and Trans.). Oxford: Clarendon Press.Google Scholar
  40. Kepler, J. (1997 [1619]). The harmony of the world (A. J. Aiton et al., Trans and Ann.). Philadelphia: American Philosophical Society.Google Scholar
  41. Kepler, J. (1937). Gesammelte werke 1571–1630 (W. von Dyck & M. Caspar, Eds.). München: C. H. Beck.Google Scholar
  42. Kepler, J. (1981 [1596]). Mysterium cosmographicum, the secret of the universue (A. M. Duncan, Trans.). New York: Abaris Books.Google Scholar
  43. Kepler, J. (1992 [1609]). New astronomy (W. H. Donahue, Trans.). Cambridge: Cambridge University Press.Google Scholar
  44. Kepler, J. (2000 [1604]). Optics: Paralipomena to witelo and the optical part of astronomy (W. H. Donahue, Trans.). Santa Fe, NM: Green Lion Press.Google Scholar
  45. Koyré A. (1957) From the closed world to the infinite universe. Johns Hopkins Press, BaltimoreGoogle Scholar
  46. Kusukawa S., Maclean I. (2006) Transmitting knowledge: Words, images, and instruments in early modern Europe. Oxford University Press, OxfordGoogle Scholar
  47. Landes D. S. (1983) Revolution in time: Clocks and the making of the modern world. The Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  48. Lefèvre, W. (eds) (2004) Picturing machines 1400–1700. MIT Press, Cambridge, MAGoogle Scholar
  49. Lefèvre, W. (eds) et al (2003) The power of images in early modern sciences. Birkhäuser verlag, BaselGoogle Scholar
  50. Lennox J. (1985) Aristotle, Galileo and the mixed sciences. In: Wallace W. (eds) Reinterpreting Galileo. Catholic University of America Press, Washington, DC, pp 29–51Google Scholar
  51. Leonardo da Vinci. (1938). The notebooks of Leonardo da Vinci (E. MacCurdy, Trans. and Ed.). London.Google Scholar
  52. Lüthy, C. (eds) et al (2001) Late medieval and early modern corpuscular matter theories. Leiden, BrillGoogle Scholar
  53. Machamer, P. (eds) (1998) The Cambridge companion to Galileo. Cambridge University Press, CambridgeGoogle Scholar
  54. Maestlin, M. (1582). De Astronomiae Principalibus et Primis Fondamentis Disputatio. Heidelberg.Google Scholar
  55. Mahoney, M. (1980). Christiaan huygens: The measurement of time and of longitude at sea. In H. J. M. Bos, et al. (Eds.), Studies on Christiaan Huygens (pp. 234–270). Lisse: Swets & Zeitlinger.Google Scholar
  56. Mahoney, M. (1990). Infinitesimals and transcendent relations: the mathematics of motion in the late seventeenth century. In D. C. Lindberg & R. S. Westman (Eds.), Reappraisals of the Scientific Revolution (pp. 461–492). Cambridge: Cambridge University Press.Google Scholar
  57. Mahoney, M. (1998). The mathematical realm of nature. In D. Garber & M. Ayers (Eds.), The Cambridge history of seventeenth century philosophy (pp. 702–755). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. Mahoney, M. (2000). Huygens and the pendulum: From device to mathematical relation. In E. Grosholz & H. Breger (Eds.), The Growth of mathematical knowledge (pp. 17–39). Dordrecht: Kluwer Academic Publishers.Google Scholar
  59. Mahoney, M. (2004). Drawing mechanics. In W. Lefevre (Ed.). Picturing machines, 1400–1700. Cambridge, MA: MIT Press.Google Scholar
  60. Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, New YorkGoogle Scholar
  61. Naylor, R. (2003). Galileo, Copernicanism and the origins of the new science of motion. The British Journal for the History of Science, 36, 151–181.CrossRefGoogle Scholar
  62. Newton I. (1960) The correspondence of Isaac Newton (H. Turnbull, Ed). Cambridge University Press, CambridgeGoogle Scholar
  63. Newton, I. (1999 [1687–1726]). The Principia (I. B. Cohen & A. Whitman, Trans. and Ann.). Berkeley: University of California Press.Google Scholar
  64. Oresme N. (1968) Nicole Oresme and the medieval geometry of qualities and motions ... tractatus de configurationibus qualitatum et motuum (M. Clagett, Ed. and Trans.). The University of Wisconsin Press, MadisonGoogle Scholar
  65. Oresme N. (1971) Nicole Oresme and the kinematics of circular motion: Tractatus de commensurabilitate vel incommensurabilitate motuum celi (E. Grant, Ed. and Trans.). The University of Wisconsin Press, MadisonGoogle Scholar
  66. Panofsky E. (1954) Galileo as a critic of the arts. Martinus Nijhoff, The HagueGoogle Scholar
  67. E. (1980) Natural history (W. H. S Johns, Trans.). Harvard University Press, Cambridge MAGoogle Scholar
  68. Reeves E. (1997) Painting the heavens: Art and science in the age of Galileo. Princeton University Press, PrincetonGoogle Scholar
  69. Regiomontanus, J. (1533). De triangulis omnimodis libri quinque. Nuremberg.Google Scholar
  70. Renn, J., Damerow, P., & Riger, S. (2000). Hunting the white elephant: When and how did Galileo discover the law of fall?. Science in Context, 13, 299–423.CrossRefGoogle Scholar
  71. Shea, W. R. (Ed.). (1983). Nature mathematized. Dordrecht: Reidel.Google Scholar
  72. Stephenson B. (1994) Kepler’s Physicial Astronomy. Princeton University Press, PrincetonGoogle Scholar
  73. Stephenson B. (1994) The Music of the Heavens: Kepler’s Harmonic Astronomy. Princeton University Press, PrincetonGoogle Scholar
  74. Sutton J. (1998) Philosophy and memory traces: Descartes to connectionism. Cambridge University Press, CambridgeGoogle Scholar
  75. Taimina, D. Exploring linkages. http://kmoddl.library.cornell.edu/linkages/.
  76. Tartaglia, N. (1537). Nova scientia. Venice.Google Scholar
  77. Van Maanen, J. (1992). Seventeenth century instruments for drawing conic sections. The Mathematical Gazette, 76, 222–230.CrossRefGoogle Scholar
  78. Witelo. (1991). Witelionis perspectivae liber secundus et liber tertius: Books II and III of Witelo’s perspectiva (S. Unguru, Trans. and Ed.). Wroclaw: Studia Copernicana XXVIII.Google Scholar
  79. Yoder J. G. (1988) Unrolling time: Christiaan Huygens and the mathematization of nature. Cambridge University Press, CambridgeGoogle Scholar
  80. Zwijnenberg R. (1999) The writing and drawings of Leonardo da Vinci: Order and chaos in early modern thought (C. A. Van Eck, Trans.). Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.University of SydneySydneyAustralia
  2. 2.Bar Ilan UniversityRamat-GanIsrael

Personalised recommendations