Synthese

, 183:313 | Cite as

Models and mechanisms in psychological explanation

Article

Abstract

Mechanistic explanation has an impressive track record of advancing our understanding of complex, hierarchically organized physical systems, particularly biological and neural systems. But not every complex system can be understood mechanistically. Psychological capacities are often understood by providing cognitive models of the systems that underlie them. I argue that these models, while superficially similar to mechanistic models, in fact have a substantially more complex relation to the real underlying system. They are typically constructed using a range of techniques for abstracting the functional properties of the system, which may not coincide with its mechanistic organization. I describe these techniques and show that despite being non-mechanistic, these cognitive models can satisfy the normative constraints on good explanations.

Keywords

Psychological explanation Models Mechanisms Cognition Realization 

References

  1. Anderson J. R. (1990) The adaptive character of thought. Lawrence Erlbaum, Hillsdale, NJGoogle Scholar
  2. Barrett L. F. (2009) The future of psychology: Connecting mind to brain. Perspectives on Psychological Science 4: 326–339CrossRefGoogle Scholar
  3. Bechtel W. (2006) Discovering cell mechanisms: The creation of modern cell biology. Cambridge University Press, CambridgeGoogle Scholar
  4. Bechtel W. (2008) Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Routledge, New YorkGoogle Scholar
  5. Bechtel W. (2009) Looking down, around, and up: Mechanistic explanation in psychology. Philosophical Psychology 22: 543–564CrossRefGoogle Scholar
  6. Bechtel W., Abrahamson A. (2005) Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences 36: 421–441CrossRefGoogle Scholar
  7. Bechtel W., Richardson R. C. (1993) Discovering complexity. Princeton University Press, PrincetonGoogle Scholar
  8. Biederman I. (1987) Recognition-by-components: A theory of human image understanding. Psychological Review 94: 115–147CrossRefGoogle Scholar
  9. Biederman I. (1995) Visual object recognition. In: Kosslyn S. F., Osherson D. N. (eds) An invitation to cognitive science (2nd ed). MIT Press, Cambridge, pp 121–165Google Scholar
  10. Boden M. (2006) Mind as machine: A history of cognitive science (2 Vols.). Oxford University Press, OxfordGoogle Scholar
  11. Bokulich, A. (2011). How scientific models can explain. Synthese, 180, 33–45.CrossRefGoogle Scholar
  12. Canolty R. T., Ganguly K., Kennerley S. W., Cadieu C. F., Koepsell K., Wallis J. D. et al (2010) Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proceedings of the National Academy of Sciences 107: 17356–17361CrossRefGoogle Scholar
  13. Chemero T. (2009) Radical embodied cognitive science. MIT Press, CambridgeGoogle Scholar
  14. Clark A. (1992) The presence of a symbol. Connection Science 4: 193–205CrossRefGoogle Scholar
  15. Craver C. F. (2006) What mechanistic models explain. Synthese 153: 355–376CrossRefGoogle Scholar
  16. Craver C. F. (2007) Explaining the brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  17. Craver C. F. (2009) Mechanisms and natural kinds. Philosophical Psychology 22: 575–594CrossRefGoogle Scholar
  18. Craver C. F., Bechtel W. (2006) Mechanism. In: Sarkar S., Pfeifer J. (eds) Philosophy of science: An encyclopedia. Routledge, New York, pp 469–478Google Scholar
  19. Cummins R. (1983) The nature of psychological explanation. MIT Press, CambridgeGoogle Scholar
  20. Estes W. K. (1994) Classification and cognition. Oxford University Press, OxfordGoogle Scholar
  21. Felleman D. J., van Essen D. C. (1991) Distributed hierarchical processing in primate visual cortex. Cerebral Cortex 1: 1–47CrossRefGoogle Scholar
  22. Gallistel C. R., King A. P. (2009) Memory and the computational brain. Wiley-Blackwell, Malden, MACrossRefGoogle Scholar
  23. Giere R. (1988) Explaining science: A cognitive approach. University of Chicago Press, ChicagoGoogle Scholar
  24. Glennan S. (1996) Mechanisms and the nature of causation. Erkenntnis 44: 49–71CrossRefGoogle Scholar
  25. Glennan S. (1997) Capacities, universality, and singularity. Philosophy of Science 64: 605–626CrossRefGoogle Scholar
  26. Glennan S. (2005) Modeling mechanisms. Studies in History and Philosophy of Biological and Biomedical Sciences 36: 443–464CrossRefGoogle Scholar
  27. Hanson, S. J., Bunzl, M. (eds) (2010) Foundational issues in human brain mapping. MIT Press, Cambridge, MAGoogle Scholar
  28. Hummel J. E., Biederman I. (1992) Dynamic binding in a neural network for shape recognition. Psychological Review 99: 480–517CrossRefGoogle Scholar
  29. Just M. A., Carpenter P. A. (1992) A capacity theory of comprehension: Individual differences in working memory. Psychological Review 99: 122–149CrossRefGoogle Scholar
  30. Just M. A., Carpenter P. A., Varma S. (1999) Computational modeling of high-level cognition and brain function. Human Brain Mapping 8: 128–136CrossRefGoogle Scholar
  31. Kruschke J. K. (1992) ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review 99: 22–44CrossRefGoogle Scholar
  32. Kruschke J. K. (2008) Models of categorization. In: Sun R. (eds) The Cambridge handbook of computational psychology. Cambridge University Press, Cambridge, pp 267–301Google Scholar
  33. Love B. C., Gureckis T. M. (2007) Models in search of a brain. Cognitive, Affective, and Behavioral Neuroscience 7: 90–108CrossRefGoogle Scholar
  34. Love B. C., Medin D. L., Gureckis T. M. (2004) SUSTAIN: A network model of category learning. Psychological Review 111: 309–332CrossRefGoogle Scholar
  35. Machamer P. (2004) Activities and causation: The metaphysics and epistemology of mechanisms. International Studies in the Philosophy of Science 18: 27–39CrossRefGoogle Scholar
  36. Machamer P., Darden L., Craver C. (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25CrossRefGoogle Scholar
  37. Malt B. C. (1989) An on-line investigation of prototype and exemplar strategies in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition 15: 539–555CrossRefGoogle Scholar
  38. Minda J. P., Smith J. D. (2002) Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition 28: 275–292CrossRefGoogle Scholar
  39. Murphy G. (2002) The big book of concepts. MIT Press, CambridgeGoogle Scholar
  40. Newell A. (1990) Unified theories of cognition. Harvard University Press, CambridgeGoogle Scholar
  41. Nosofsky R. M. (1986) Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology 115: 39–57Google Scholar
  42. Polk, T. A., Seifert, C. M. (eds) (2002) Cognitive modeling. MIT Press, CambridgeGoogle Scholar
  43. Ramsey W. (2007) Rethinking representation. Cambridge University Press, CambridgeGoogle Scholar
  44. Smith J. D., Minda J. P. (2002) Distinguishing prototype-based and exemplar-based processes in dot-pattern category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 28: 800–811CrossRefGoogle Scholar
  45. Tarr M. J. (2002) Object recognition. In: Nadel L. (eds) Encyclopedia of cognitive science. Nature Publishing Group, London, pp 490–494Google Scholar
  46. Tarr M. J., Bülthoff H. H. (1998) Object recognition in man, monkey, and machine. MIT Press, CambridgeGoogle Scholar
  47. Ullman S. (1996) High-level vision: Object recognition and visual cognition. MIT Press, CambridgeGoogle Scholar
  48. van Essen D. C. (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L., Werner J. S. (eds) The visual neurosciences. MIT Press, Cambridge, pp 507–521Google Scholar
  49. van Gelder T. (1995) What might cognition be, if not computation?. Journal of Philosophy 92: 81–345CrossRefGoogle Scholar
  50. van Orden G. C., Pennington B. F., Stone G. O. (2001) What do double dissociations prove?. Cognitive Science 25: 111–172CrossRefGoogle Scholar
  51. Weiskopf, D. A. (2011). The functional unity of special science kinds. British Journal for the Philosophy of Science, 62, 233–258.CrossRefGoogle Scholar
  52. Wilson R. A. (2004) Boundaries of the mind: The individual in the fragile sciences—Cognition. Cambridge University Press, CambridgeGoogle Scholar
  53. Wimsatt W. C. (2007) Re-engineering philosophy for limited beings: Piecewise approximations to reality. Harvard University Press, CambridgeGoogle Scholar
  54. Winsberg E. (2010) Science in the age of computer simulation. University of Chicago Press, ChicagoGoogle Scholar
  55. Woodward J. (2002) What is a mechanism? A counterfactual account. Philosophy of Science 69: S366–S377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophyGeorgia State UniversityAtlantaUSA

Personalised recommendations