, Volume 186, Issue 3, pp 719–752 | Cite as

Bohrification of operator algebras and quantum logic

  • Chris Heunen
  • Nicolaas P. Landsman
  • Bas Spitters
Open Access


Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set \({\mathcal{C}(A)}\) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that \({\mathcal{C}(A)}\) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n × n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski–Mulvey) of the “Bohrification” \({\underline A}\) of A, which is a commutative Rickart C*-algebra in the topos of functors from \({\mathcal{C}A}\) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns–Lakser completions. Finally, we establish a connection between probability measures on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of \({\underline A}\) for A = B(H).


Quantum logic Intuitionistic logic C*-algebras Locales Bohrification 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Banaschewski B., Mulvey C. J. (2006) A globalisation of the Gelfand duality theorem. Annals of Pure and Applied Logic 137(1–3): 62–103CrossRefGoogle Scholar
  2. Bell J. L. (1988) Toposes and local set theories. The Clarendon Press/Oxford University Press, New YorkGoogle Scholar
  3. Berberian S. K. (1972) Baer *-rings. Springer, New YorkCrossRefGoogle Scholar
  4. Birkhoff G., von Neumann J. (1936) The logic of quantum mechanics. Annals of Mathematics 37(4): 823–843CrossRefGoogle Scholar
  5. Bohr N. (1949) Discussion with Einstein on epistemological problems in atomic physics. In: Einstein A. (ed) Philosopher–Scientist. Open Court, La Salle, pp 201–241Google Scholar
  6. Bohr, N. (1985). Collected works, Vol. 6: Foundations of quantum physics I (1926–1932); Vol. 7: Foundations of quantum physics II (1933–1958). New York: Elsevier.Google Scholar
  7. Bohr, N. (1987). Quantum physics and philosophy—causality and complementarity. In The philosophical writings of Niels Bohr, Vol. III: Essays 1958–1962 on atomic physics and human knowledge. Woodbridge: Ox Box Press.Google Scholar
  8. Boole G. (1854) An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Macmillan, LondonGoogle Scholar
  9. Bruns G., Lakser H. (1970) Injective hulls of semilattices. Canadian Mathematical Bulletin 13: 115–118CrossRefGoogle Scholar
  10. Butterfield J., Isham C. J. (1998) A topos perspective on the Kochen–Specker theorem: I. Quantum states as generalized valuations. International Journal of Theoretical Physics 37(11): 2669–2733CrossRefGoogle Scholar
  11. Caspers, M., Heunen, C., Landsman, N. P., & Spitters, B. (2009). Intuitionistic quantum logic of an n-level system. Foundations of Physics, 731–759. arXiv:0902.3201.Google Scholar
  12. Cederquist, J., & Coquand, T. (2000). Entailment relations and distributive lattices. In Logic Colloquium ’98 (Prague), Vol. 13 of Lecture Notes in Logic (pp. 127–139). Urbana, IL: Association for Symbolic Logic.Google Scholar
  13. Chiara M. D., Giuntini R., Greechie R. (2004) Reasoning in quantum theory: Sharp and unsharp quantum logics. Kluwer, DordrechtGoogle Scholar
  14. Chiara, M. L. D., & Giuntini, R. (2002). Quantum logics. In Handbook of Philosophical Logic (Vol. VI, pp. 129–228). Dordrecht: Kluwer.Google Scholar
  15. Coecke B. (2002) Quantum logic in intuitionistic perspective. Studia Logica 70: 411–440CrossRefGoogle Scholar
  16. Coquand T. (2005) About Stone’s notion of spectrum. Journal of Pure and Applied Algebra 197: 141–158CrossRefGoogle Scholar
  17. Coquand T., Spitters B. (2005) Formal topology and constructive mathematics: The Gelfand and Stone–Yosida representation theorems. Journal of Universal Computer Science 11(12): 1932–1944Google Scholar
  18. Coquand T., Spitters B. (2009) Constructive Gelfand duality for C*-algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 147(2): 323–337CrossRefGoogle Scholar
  19. Coquand T., Spitters B. (2009b) Integrals and valuations. Journal of Logic and Analysis 1(3): 1–22Google Scholar
  20. D’Antoni C., Zsidó L. (2008) Abelian strict approximation in AW*-algebras and Weyl–von Neumann type theorems. Transactions of the American Mathematical Society 360(9): 4705–4738CrossRefGoogle Scholar
  21. Dediu, Luminiţa (Vîţǎ), & Bridges, D. (2001). Embedding a linear subset of B(H) in the dual of its predual. In U. Berger, P. Schuster, & H. Osswald (Eds.), Reuniting the antipodes—Constructive and nonstandard views of the continuum. Symposium proceedings, San Servolo/Venice, Italy, May 16–22, 1999 (pp. 55–61). Dordrecht: Kluwer.Google Scholar
  22. Döring A. (2005) Kochen–Specker theorem for Von Neumann algebras. International Journal of Theoretical Physics 44(2): 139–160CrossRefGoogle Scholar
  23. Döring A., Isham C. J. (2008) A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory. Journal of Mathematical Physics 49: 053516CrossRefGoogle Scholar
  24. Dummett M. (2000) Elements of intuitionistic logic (2nd ed.). Clarendon Press, OxfordGoogle Scholar
  25. Finch P. D. (1969) On the structure of quantum logic. Journal of Symbolic Logic 34(2): 275–282CrossRefGoogle Scholar
  26. Goldblatt R. (1984) Topoi, the categorical analysis of logic. North-Holland, AmsterdamGoogle Scholar
  27. Graves W. H., Selesnick S. A. (1973) An extension of the Stone representation for orthomodular lattices. Colloquium Mathematicum 27: 21–30Google Scholar
  28. Haag R. (1996) Local quantum physics: Fields, particles, algebras. Texts and monographs in physics (2nd ed.). Springer, BerlinGoogle Scholar
  29. Hamilton W. R. (1835) Second essay on a general method in dynamics. Philosophical Transactions of the Royal Society, Part I, 125: 95–144CrossRefGoogle Scholar
  30. Held C. (1994) The meaning of complementarity. Studies in History and Philosophy of Science, Part A 25: 871–893CrossRefGoogle Scholar
  31. Heunen C., Landsman N.P., Spitters B. (2009) A topos for algebraic quantum theory. Communications in Mathematical Physics 291: 63–110 arXiv:0709.4364CrossRefGoogle Scholar
  32. Hilbert, D. (2004–2010). Lectures on the foundations of mathematics and physics (Vols. 1–6). Berlin: Springer.Google Scholar
  33. Johnstone P. T. (1982) Stone spaces. Cambridge University Press, CambridgeGoogle Scholar
  34. Joyal, A., & Tierney, M. (1983). An extension of the Galois theory of Grothendieck. Memoirs of the American Mathematical Society, 51(309), vii+71 pp.Google Scholar
  35. Kalmbach G. (1983) Orthomodular lattices. Academic Press, LondonGoogle Scholar
  36. Kaplansky I. (1968) Rings of operators. W. A. Benjamin, Inc, New YorkGoogle Scholar
  37. Kochen S., Specker E. (1967) The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17: 59–87Google Scholar
  38. Kripke, S. (1965). Semantical analysis of intuitionistic logic I. In Formal systems and recursive functions. Amsterdam: North-Holland.Google Scholar
  39. Lahti P. J. (1980) Uncertainty and complementarity in axiomatic quantum mechanics. International Journal of Theoretical Physics 19: 789–842CrossRefGoogle Scholar
  40. Landsman N. P. (2007) Between classical and quantum. In: Earman J., Butterfield J. (eds) Handbook of philosophy of science, Vol. 2: Philosophy of physics. Elsevier, New York, pp 417–553Google Scholar
  41. Mac Lane S. (1998) Categories for the working mathematician (2nd ed.). Springer, BerlinGoogle Scholar
  42. Mac Lane S., Moerdijk I. (1992) Sheaves in geometry and logic: A first introduction to topos theory. Springer, BerlinCrossRefGoogle Scholar
  43. Moore D. J. (1999) On state spaces and property lattices. Studies in History and Philosophy of Modern Physics 30(1): 61–83CrossRefGoogle Scholar
  44. Piron C. (1976) Foundations of quantum physics, Vol. 19 of Mathematical Physics monograph series. W. A. Benjamin, Inc., ReadingGoogle Scholar
  45. Rédei M. (1998) Quantum logic in algebraic approach. Kluwer, DordrechtGoogle Scholar
  46. Rickart C. E. (1946) Banach algebras with an adjoint operation. Annals of Mathematics 47(2): 528–550CrossRefGoogle Scholar
  47. Saitô K., Wright J. D. M. (2003) C*-algebras which are Grothendieck spaces. Rendiconti del Circolo Matematico di Palermo (2) 52(1): 141–144CrossRefGoogle Scholar
  48. Sakai S. (1971) C*-algebras and W*-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. Springer, New YorkGoogle Scholar
  49. Scheibe E. (1973) The logical analysis of quantum mechanics. Pergamon Press, OxfordGoogle Scholar
  50. Spitters B. (2005) Constructive results on operator algebras. Journal of Universal Computer Science 11(12): 2096–2113Google Scholar
  51. Stairs A. (1983) Quantum logic, realism and value-definiteness. Philosophy of Science 50: 578–602CrossRefGoogle Scholar
  52. Stratila S., Zsido L. (2009) Operator algebras. Theta Foundation, BucharestGoogle Scholar
  53. Stubbe I. (2005) The canonical topology on a meet-semilattice. International Journal of Theoretical Physics 44: 2283–2293CrossRefGoogle Scholar
  54. Stubbe, I., & van Steirteghem, B. (2007). Propositional systems, Hilbert lattices and generalized Hilbert spaces. In Handbook of quantum logic and quantum structures: Quantum structures (pp. 477–524). New York: Elsevier.Google Scholar
  55. Suppe F. (1989) The semantic conception of theories and scientific realism. University of Illinois Press, UrbanaGoogle Scholar
  56. Takesaki, M. (2003a). Theory of operator algebras (Vol. I). Berlin: Springer.Google Scholar
  57. Takesaki, M. (2003b). Theory of operator algebras (Vol. II). Berlin: Springer.Google Scholar
  58. Takesaki, M. (2003c). Theory of operator algebras (Vol. III). Berlin: Springer.Google Scholar
  59. van Fraassen B. (1980) The scientific image. Oxford University Press, OxfordCrossRefGoogle Scholar
  60. von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. (English translation: Mathematical foundations of quantum mechanics, Princeton: Princeton University Press, 1955.)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Chris Heunen
    • 1
  • Nicolaas P. Landsman
    • 1
  • Bas Spitters
    • 3
    • 2
  1. 1.Institute for Mathematics, Astrophysics, and Particle PhysicsRadboud Universiteit NijmegenNijmegenThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Institute for Computing and Information SciencesRadboud Universiteit NijmegenNijmegenThe Netherlands

Personalised recommendations