, Volume 186, Issue 3, pp 651–696 | Cite as

Picturing classical and quantum Bayesian inference

  • Bob CoeckeEmail author
  • Robert W. Spekkens


We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer’s calculus of ‘conditional density operators’. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.


Bayesian inference Graphical calculus Conditional density operator Symmetric monoidal category Frobenius algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramsky, S., & Coecke, B. (2004). A categorical semantics of quantum protocols. In Proceedings of 19th IEEE conference on logic in computer science (pp. 415–425). IEEE Press. arXiv:quant-ph/0402130.Google Scholar
  2. Baez, J. C. (2006). Quantum quandaries: A category-theoretic perspective. In D. Rickles, S. French, & J. T. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 240–266). Oxford: Oxford University Press. arXiv:quant-ph/0404040.Google Scholar
  3. Baez J.C., Dolan J. (1995) Higher-dimensional algebra and topological quantum field theory. Journal of Mathematical Physics 36: 6073–6105 arXiv:q-alg/9503002CrossRefGoogle Scholar
  4. Barnum H., Knill E. (2002) Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics 43: 2097–2106CrossRefGoogle Scholar
  5. Barnum, H., & Wilce, A. (2009). Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum and classical theory. arXiv:0908.2354.Google Scholar
  6. Barnum, H., Barrett, J., Leifer, M., & Wilce, A. (2006). Cloning and broadcasting in generic probabilistic theories. arXiv:quant-ph/0611295.Google Scholar
  7. Barnum H., Caves C.M., Fuchs C.A., Jozsa R., Schumacher B. (1996) Noncommuting mixed states cannot be broadcast. Physical Review Letters 76: 2818–2821 arXiv:quant-ph/9511010CrossRefGoogle Scholar
  8. Barrett J. (2007) Information processing in general probabilistic theories. Physical Review A 75: 032304 arXiv:quant-ph/0508211CrossRefGoogle Scholar
  9. Carboni A., Walters R. F. C. (1987) Cartesian bicategories I. Journal of Pure and Applied Algebra 49: 11–32CrossRefGoogle Scholar
  10. Coecke B. (2010) Quantum picturalism. Contemporary Physics 51: 59–83 arXiv:0908.1787CrossRefGoogle Scholar
  11. Coecke B., Paquette E.O. (2006) POVMs and Naimark’s theorem without sums. Electronic Notes in Theoretical Computer Science 210: 131–152 arXiv:quant-ph/0608072Google Scholar
  12. Coecke, B., & Paquette, E. O. (2011). Categories for the practising physicist. In B. Coecke (Ed.), New structures for physics. Lecture notes in physics (pp. 173–286). New York: Springer-Verlag. arXiv:0905.3010.Google Scholar
  13. Coecke B., & Pavlovic D. (2007). Quantum measurements without sums. In G. Chen, L. Kauffman, & S. Lamonaco (Eds.), Mathematics of quantum computing and technology (pp. 567–604). Abington: Taylor and Francis. arXiv:quant-ph/0608035.Google Scholar
  14. Coecke, B., Paquette, E. O., & Pavlovic, D. (2009). Classical and quantum structuralism. In I. Mackie & S. Gay (Eds.), Semantic techniques for quantum computation (pp. 29–69). Cambridge: Cambridge University Press. arXiv:0904.1997 (to appear).Google Scholar
  15. Coecke B., Paquette E.O., Perdrix S. (2008) Bases in diagrammatic quantum protocols. Electronic Notes in Theoretical Computer Science 218: 131–152 arXiv:0808.1037CrossRefGoogle Scholar
  16. Coecke, B., Pavlovic, D., Vicary J. (2008b). A new description of orthogonal bases. Mathematical Structures in Computer Science. To appear. arXiv:0810.0812.Google Scholar
  17. Cox R. T. (1946) Probability, frequency, and reasonable expectation. American Journal of Physics 14: 1–13CrossRefGoogle Scholar
  18. Dixon L., Duncan R. (2009) Graphical reasoning in compact closed categories for quantum computation. Annals of Mathematics and Artificial Intelligence 56: 23–42CrossRefGoogle Scholar
  19. Dixon, L., Duncan, R., Kissinger, A., & Merry, A. (2010). quantomatic software tool.
  20. Fuchs, C. A., & Schack, R. (2009). Quantum-Bayesian coherence. arXiv:0906.2187v1.Google Scholar
  21. Hasegawa, M., Hofmann, M., & Plotkin, G. (2008). Finite dimensional vector spaces are complete for traced symmetric monoidal categories. Lecture notes in computer science Vol. 4800 (pp. 367–385). Heidelberg: Springer-Verlag.Google Scholar
  22. Hayden P., Jozsa R., Petz D., Winter A. (2004) Structure of states which satisfy strong subadditivity of quantum entropy with equality. Communications in Mathematical Physics 246: 359–374CrossRefGoogle Scholar
  23. Joyal A., Street R. (1991) The geometry of tensor calculus I. Advances in Mathematics 88: 55–112CrossRefGoogle Scholar
  24. Kelly, G. M. (1972). Many-variable functorial calculus. In G. M. Kelly, M. L. Laplaza, G. Lewis, & S. Mac Lane (Eds.), Coherence in categories. Lecture notes in mathematics Vol. 281 (pp. 66–105). Berlin: Springer-Verlag.Google Scholar
  25. Kelly G. M., Laplaza M. L. (1980) Coherence for compact closed categories. Journal of Pure and Applied Algebra 19: 193–213CrossRefGoogle Scholar
  26. Kock J. (2003) Frobenius algebras and 2D topological quantum field theories. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Lack S. (2004) Composing PROPs. Theory and Applications of Categories 13: 147–163Google Scholar
  28. Lauda A.D. (2006) Frobenius algebras and ambidextrous adjunctions. Theory and Applications of Categories 16: 84–122 arXiv:math.CT/0502550Google Scholar
  29. Leifer M.S. (2006) Quantum dynamics as an analog of conditional probability. Physical Review A 74: 042310 arXiv:quant-ph/0606022CrossRefGoogle Scholar
  30. Leifer M.S., Poulin D. (2008) Quantum graphical models and belief propagation. Annals of Physics 323: 1899–1946 arXiv:0708.1337CrossRefGoogle Scholar
  31. Leifer, M. S., & Spekkens, R. W. (2008). Quantum analogues of Bayes’ theorem, sufficient statistics and the pooling problem (in preparation, 2009).Google Scholar
  32. Melliés, P.-A. (2009). Categorical semantics of linear logic.
  33. Pearl J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San FranciscoGoogle Scholar
  34. Pearl J. (2000) Causality: Models, reasoning and inference. Cambridge University Press, CambridgeGoogle Scholar
  35. Penrose R. (1971) Applications of negative dimensional tensors. In: Welsh D. (eds) Combinatorial mathematics and its applications. Academic Press, New York, pp 221–244Google Scholar
  36. Selinger P. (2007) Dagger compact categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170: 139–163CrossRefGoogle Scholar
  37. Selinger P. (2010) Finite dimensional Hilbert spaces are complete for dagger compact closed categories. Electronic Notes in Theoretical Computer Science 270: 113–119CrossRefGoogle Scholar
  38. Selinger P. (2011) A survey of graphical languages for monoidal categories. In: Coecke B. (eds) New structures for physics. Lecture notes in physics. Springer-Verlag, Heidelberg, pp 275–337 arXiv:0908.3347Google Scholar
  39. Street R. (2007) Quantum groups: A path to current Algebra. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Turaev V. (1994) Quantum invariants of knots and 3-manifolds. de Gruyter, BerlinGoogle Scholar
  41. Uhlmann A. (1977) Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Communications in Mathematical Physics 54: 21–32CrossRefGoogle Scholar
  42. Vicary J. (2008) Categorical formulation of finite-dimensional C*-algebras. Electronic Notes in Theoretical Computer Science 270: 129–145 Extended version: arXiv:0805.0432CrossRefGoogle Scholar
  43. Yetter D.N. (2001) Functorial Knot theory. Categories of tangles, coherence, categorical deformations, and topological invariants. World Scientific, River EdgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Oxford University Computing LaboratoryOxfordUK
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations