, Volume 186, Issue 3, pp 775–792

The logic of empirical theories revisited

Open Access


Logic and philosophy of science share a long history, though contacts have gone through ups and downs. This paper is a brief survey of some major themes in logical studies of empirical theories, including links to computer science and current studies of rational agency. The survey has no new results: we just try to make some things into common knowledge.


Theory structure Model theory Formal language Dynamic logic Computation Agency 


  1. Abramsky S. (2008) Information, processes and games. In: Adriaans P., van Benthem J. (eds) Handbook of the philosophy of information. Elsevier Science Publishers, Amsterdam, pp 483–549CrossRefGoogle Scholar
  2. Abramsky, S., & Coecke, B. (2004). A categorical semantics of quantum protocols. In Proceedings of LiCS‘04. CA: IEEE Computer Science Press.Google Scholar
  3. Aiello, M., Pratt-Hartman, I., van Benthem, J. (eds) (2007) Handbook of spatial logics. Springer, HeidelbergGoogle Scholar
  4. Aliseda A. (2006) Abductive reasoning: Logical investigations into discovery and explanation. Kluwer, DordrechtGoogle Scholar
  5. Andréka, H., Madarász, J., & Németi, I. (2007). Logic of space-time and relativity theory. In Handbook of spatial logics (pp. 607–711). Heidelberg: Springer.Google Scholar
  6. Baltag, A., & Smets, S. (2008a). A dynamic-logical perspective on quantum behavior. In L. Horsten, & I. Douven (Eds.), Special issue on applied logic in the methodology of science. Studia Logica 89, 185–209.Google Scholar
  7. Baltag A., Smets S. (2008b) A qualitative theory of dynamic interactive belief revision. In: Bonanno G., van der Hoek W., Wooldridge M. (eds) Texts in logic and games. Amsterdam University Press, Amsterdam, pp 9–58Google Scholar
  8. Baltag A., Smets S., Zvesper J. (2009) Keep ‘hoping’ for rationality: A solution to the backward induction paradox. Synthese 169(2): 301–333CrossRefGoogle Scholar
  9. Barendregt, H. (2008). Buddhist models of the mind and the common core thesis on mysticism. One hundred years of intuitionism (1907–2007) (pp. 131–145). Birkhäuser, Basel: Publications des Archives Henri-Poincaré.Google Scholar
  10. Bergstra J., Heering J., Klint P. (1990) Module algebra. Journal of the ACM 37(2): 335–372CrossRefGoogle Scholar
  11. Beth E. W. (1948) Analyse Sémantique des Théories Physiques. Synthese 7: 206–207Google Scholar
  12. Bod R. (2006) Towards a general model of applying science. International Studies in the Philosophy of Science, 20(1): 5–25CrossRefGoogle Scholar
  13. Bolzano, B. (1837). Wissenschaftslehre. Sulzbach: Buchhandlung Seidel. Also appeared as Theory of science (R. George Trans.). Berkeley: University of California Press (1972).Google Scholar
  14. Bressan A. (1972) A general interpreted modal calculus. Yale University Press, New HavenGoogle Scholar
  15. Carnap R. (1928) Die Logische Aufbau der Welt. Felix Meiner Verlag, LeipzigGoogle Scholar
  16. Craig W., Vaught R. (1958) Finite axiomatizability using additional predicates. Journal of Symbolic Logic 23: 289–308CrossRefGoogle Scholar
  17. Dalla Chiara M.-L. (1992) Quantum logic. Journal of Symbolic Logic 57(2): 753–754CrossRefGoogle Scholar
  18. de Bruin, B. (2010). Explaining games: The epistemic programme in game theory. Synthese Library, Vol. 34. Dordrecht: Springer.Google Scholar
  19. Dégrémont C., Gierasimczuk N. (2009) Can doxastic agents learn? On the temporal structure of learning. In: Horty J., Pacuit E. (eds) Proceedings LORI II Chongqing. Springer. Extended version in Gierasimczuk, N. (2010). Knowing one’s limits. Dissertation, ILLC, University of Amsterdam, Heidelberg, pp 90–104Google Scholar
  20. Dégrémont, C., & Roy, O. (2009). Agreement theorems in dynamic epistemic logic. In A. Heifetz (Ed.), TARK ‘09: Proceedings of the 12th Conference on theoretical aspects of rationality and knowledge, New York, pp. 91–98.Google Scholar
  21. Demopoulos W. (2009) Three views of theoretical knowledge. Department of Philosophy, The University of Western Ontario, LondonGoogle Scholar
  22. Doyle J. (1983) What should AI want from the supercomputers?. AI Magazine 4(4): 33–35Google Scholar
  23. Earman J. (1992) Bayes or bust? A critical examination of Bayesian confirmation theory. The MIT Press, Cambridge, MAGoogle Scholar
  24. Fitelson, B. (2006). Old evidence, logical omniscience & bayesianism. Lecture ILLC workshop probability and logic.Department of Philosophy, University of California at Berkeley, Amsterdam.Google Scholar
  25. Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a. S: Louis Nebert.Google Scholar
  26. Friedman M. (2001) Dynamics of reason. CSLI Publications, StanfordGoogle Scholar
  27. Gärdenfors P. (1988) Knowledge in flux. Bradford Books/MIT Press, Cambridge, MAGoogle Scholar
  28. Giles R. (1974) A non-classical logic for physics. Studia Logica 33: 399–417CrossRefGoogle Scholar
  29. Girard, P. (2007). Modal logic for belief and preference change. Ph.D. Thesis, Department of Philosophy, Stanford University and ILLC, University of Amsterdam.Google Scholar
  30. Glymour C. (1980) Theory and evidence. Princeton University Press, PrincetonGoogle Scholar
  31. Glymour C. et al (1992) Android epistemology: Computation, artificial intelligence, and the philosophy of science. In: Salmon M.H. (eds) Introduction to the philosophy of science. Hackett, Indianapolis/Cambridge, pp 364–403Google Scholar
  32. Goldman A. (1999) Knowledge in a social world. Oxford University Press, OxfordCrossRefGoogle Scholar
  33. Goodman N. (1955) Fact, fiction, and forecast. Harvard University Press, Cambridge, MAGoogle Scholar
  34. Hempel C. (1965) Aspects of explanation and other essays in the philosophy of science. The Free Press, New YorkGoogle Scholar
  35. Hempel C., Oppenheim P. (1948) Studies in the logic of explanation. Philosophy of Science 15(2): 135–175CrossRefGoogle Scholar
  36. Hintikka J. (1973) Logic, language-games and information. Clarendon Press, OxfordGoogle Scholar
  37. Hintikka J., Halonen I., Mutanen A. (2002) Interrogative logic as a general theory of reasoning. In: Gabbay D., Johnson R., Ohlbach H., Woods J. (eds) Handbook of the logic of argument and inference. Elsevier, Amsterdam, pp 295–338CrossRefGoogle Scholar
  38. Huff T. (1993) The rise of early modern science: Islam, China, and the West. Cambridge University Press, CambridgeGoogle Scholar
  39. Kelly K. (1996) The logic of reliable enquiry. Oxford University Press, OxfordGoogle Scholar
  40. Ketland J. (2004) Empirical adequacy and Ramseyfication. British Journal for the Philosophy of Science 55: 287–300CrossRefGoogle Scholar
  41. Kuhn T. S. (1962) The structure of scientific revolutions. University of Chicago Press, ChicagoGoogle Scholar
  42. Kuipers Th. (2000) From instrumentalism to constructive realism. Kluwer Academic Publishers, DordrechtGoogle Scholar
  43. Lorenz K., Lorenzen P. (1978) Dialogische logik. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  44. Maibaum, T. (1986). Modular construction of logics for specification. In Proceedings 4th workshop on abstract data types. University of Braunschweig, Department of Computer Science, Informatik-Bericht Nr. 86–09.Google Scholar
  45. McCarthy J. (1980) Circumscription—a form of non-monotonic reasoning. Artificial Intelligence 13: 27–39CrossRefGoogle Scholar
  46. Mill J. S. (1843) A system of logic. Parker, LondonGoogle Scholar
  47. Miller D. (1974) Popper’s qualitative theory of verisimilitude. The British Journal for the Philosophy of Science 25: 166–177CrossRefGoogle Scholar
  48. Mittelstaedt P. (1978) Quantum logic. Reidel, DordrechtCrossRefGoogle Scholar
  49. Nagel E. (1961) The structure of science. Hackett, IndianapolisGoogle Scholar
  50. Osherson D., Stob M., Weinstein S. (1986) Systems that learn. The MIT Press, Cambridge, MAGoogle Scholar
  51. Pearce D., Rantala V. (1983) New foundations for metascience. Synthese 56: 1–26Google Scholar
  52. Peirce, C. S. (1933). In C. Hartshorne & P. Weiss (Eds.), Collected papers. Cambridge MA: Harvard University Press.Google Scholar
  53. Przelecki M. (1969) The logic of empirical theories. Routledge and Kegan Paul, LondonGoogle Scholar
  54. Quine W. V. O. (1951) Two dogmas of empiricism. The Philosophical Review 60: 20–43CrossRefGoogle Scholar
  55. Ramsey, F. P. (1960). In Braithwaite, R. B. (Ed.), The foundations of mathematics and other logical essays. Paterson, NJ: Littlefield, AdamsGoogle Scholar
  56. Rescher N. (1970) Scientific explanation. The Free Press, New YorkGoogle Scholar
  57. Robb A. A. (1914) A theory of time and space. Cambridge University Press, CambridgeGoogle Scholar
  58. Rott H. (2007) Information structures in belief revision. In: Adriaans P., van Benthem J. (eds) Handbook of the philosophy of information. Elsevier Science Publishers, Amsterdam, pp 457–482Google Scholar
  59. Ryan, M. (1992). Ordered presentations of theories: Default reasoning and belief revision. Ph.D. thesis, Department of Computing, Imperial College, London.Google Scholar
  60. Schurz G. (2009) When empirical success implies theoretical reference: A structural correspondence theorem. British Journal for the Philosophy of Science 60: 101–133CrossRefGoogle Scholar
  61. Skyrms B. (1990) The dynamics of rational deliberation. Harvard University Press, Cambridge, MAGoogle Scholar
  62. Sneed J. D. (1971) The logical structure of mathematical physics. Reidel, DordrechtCrossRefGoogle Scholar
  63. Staal F. (2006) Artificial languages across sciences and civilizations. Journal of Indian Philosophy 34(1–2): 89–141CrossRefGoogle Scholar
  64. Suppe, F. (eds) (1977) The structure of scientific theories. University of Illinois Press, UrbanaGoogle Scholar
  65. Tarski A. (1959) What is elementary geometry?. In: Henkin L., Suppes P., Tarski A. (eds) The axiomatic method, with special reference to geometry and physics. North-Holland, Amsterdam, pp 16–29Google Scholar
  66. Toulmin S. (1958) The uses of argument. Cambridge University Press, CambridgeGoogle Scholar
  67. van Benthem J. (1978a) ‘Four Paradoxes’. Journal of Philosophical Logic 7: 49–72CrossRefGoogle Scholar
  68. van Benthem J. (1978b) Ramsey eliminability. Studia Logica 37(4): 321–336CrossRefGoogle Scholar
  69. van Benthem J. (1982) The logical study of science. Synthese 51: 431–472CrossRefGoogle Scholar
  70. van Benthem J. (1983) The logic of time. Reidel, DordrechtGoogle Scholar
  71. van Benthem J. (1984) Possible worlds semantics: A research program that cannot fail?. Studia Logica 43(4): 379–393CrossRefGoogle Scholar
  72. van Benthem, J. (1989). Semantic parallels in natural language and computation. In H.-D. Ebbinghaus et al. (Eds.), Logic colloquium. Granada 1987 (pp. 331–375). Amsterdam: North-Holland.Google Scholar
  73. van Benthem, J. (1999). Logic in Games. Lecture Notes, ILLC Amsterdam & Department of Philosophy, Stanford. Book version to appear with Texts in Logic and Games FoLLI Lecture Notes in Artificial Intelligence, Heidelberg: Springer.Google Scholar
  74. van Benthem, J. (2003). Is there still logic in Bolzano’s key?’ In E. Morscher (Ed.), Bernard Bolzanos Leistungen in Logik, Mathematik und Physik (Bd. 16, pp. 11–34). Sankt Augustin, Academia Verlag.Google Scholar
  75. van Benthem, J. (2005). A note on modeling theories. In R. Festa, A. Aliseda, & J. Peijnenburg (Eds.), Confirmation, empirical progress and truth approximation. Essays in debate with Theo Kuipers (pp. 403–419). Amsterdam: Rodopi.Google Scholar
  76. van Benthem J. (2006) Logic in philosophy. In: Jacquette D. (eds) Handbook of the philosophy of logic (pp. 65–99). Elsevier, AmsterdamGoogle Scholar
  77. van Benthem J. (2007) Dynamic logic of belief revision. Journal of Applied Non-Classical Logics 17(2): 129–155CrossRefGoogle Scholar
  78. van Benthem J. (2008) Logical pluralism meets logical dynamics?. The Australasian Journal of Logic 6: 28 ppGoogle Scholar
  79. van Benthem J. (2009a) Horror contradictionis, ILLC Amsterdam, to appear. In: Hales S. (eds) Relativism. Oxford University Press, OxfordGoogle Scholar
  80. van Benthem, J. (2009b). Logic, mathematics, and general agency. Amsterdam: ILLC. Appeared in Bour, P. E., Rebuschi, M., & Rollet, L. (Eds.), (2010). Construction (pp. 281–300). London: College Publications.Google Scholar
  81. van Benthem, J. (2010). Logical dynamics of information and interaction. Cambridge: Cambridge University Press (to appear, summer 2011).Google Scholar
  82. van Benthem J., Martinez M. (2008) The stories of logic and information. In: Adriaans P.,van Benthem J. (eds) Handbook of the philosophy of information. Elsevier Science Publishers, Amsterdam, pp 217–280CrossRefGoogle Scholar
  83. van Benthem, J., & Minica, S. (2009). Dynamic logic of questions. In J. Horty, & E. Pacuit(Eds.), Proceedings LORI II Chongqing (pp. 27–41). Heidelberg: Springer (Extended version as ILLC Report, University of Amsterdam).Google Scholar
  84. van Benthem J., Pearce D. (1984) A mathematical characterization of interpretation between theories. Studia Logica 43(3): 295–303CrossRefGoogle Scholar
  85. van Benthem, J., & Velazquez-Quesada, F. (2009). Inference, promotion, and the dynamics of awareness. Amsterdam: ILLC. Appeared in Knowledge, rationality and action. Synthese, 177(1), 5–27 (2010).Google Scholar
  86. Vickers, J. (2006). The problem of induction. In Stanford encyclopedia of philosophy.
  87. von Helmholtz, H. (1868). Über die Thatsachen, welche der Geometrie zu Grunde liegen. In Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen, No. 9 (3 June).Google Scholar
  88. Wang W. (2008) Scientific explanation and the laws of nature. Institute of Science, Technology and Society, Tsinghua University, BeijingGoogle Scholar
  89. Weinberger, O. (1965). Der Relativisierungsgrundsatz und der Reduktionsgrundsatz—zwei Prinzipien des Dialektischen Denkens’ Prague: Nakladatelství Ceskoslovenské Akademie Ved.Google Scholar
  90. Wheeler G., Haenni R., Romeijn J.-W., Williamson J. (2010) Probabilistic logic and probabilistic networks. Springer, HeidelbergGoogle Scholar
  91. Zwart S. (2002) Refined verisimilitude. Kluwer, DordrechtGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations