Synthese

, Volume 186, Issue 3, pp 633–649 | Cite as

A logic road from special relativity to general relativity

  • Hajnal Andréka
  • Judit X. Madarász
  • István Németi
  • Gergely Székely
Article

Abstract

We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we “derive” an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist.

Keywords

Relativity theory Logical foundations Axiomatization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka H., Goranko V., Mikulás Sz., Németi I., Sain I. (1995) Effective first order temporal logics. In: Bolc L., Szałas A. (eds) Time and logic, a computational approach. UCL, London, pp 51–129Google Scholar
  2. Andréka, H., Madarász, J. X., & Németi, I. (2002). On the logical structure of relativity theories. E-book, Alfréd Rényi Institute of Mathematics, Budapest. With contributions from A. Andai, G. Sági, I. Sain, Cs. Tőke. http://www.math-inst.hu/pub/algebraic-logic/olsort.html. (pp. 1312)
  3. Andréka H., Madarász J. X., Németi I. (2006) Logical axiomatizations of space-time. Samples from the literature. In: Prékopa A., Molnár E. (eds) Non-Euclidean geometries. Springer-Verlag, New York, pp 155–185CrossRefGoogle Scholar
  4. Andréka H., Madarász J. X., Németi I. (2007) Logic of space-time and relativity theory. In: Aiello M., Pratt-Hartmann I., van Benthem J. (eds) Handbook of spatial logics. Springer-Verlag, Dordrecht, pp 607–711CrossRefGoogle Scholar
  5. Andréka, H., Madarász, J. X., Németi, I., & Székely, G. (2010). Relativity theory on logical grounds. Budapest: Course Notes. http://www.math-inst.hu/pub/algebraic-logic/kurzus10/kurzus10.htm.
  6. Andréka, H., Madarász, J. X., Németi, I., Németi, P., & Székely, G. Vienna Circle and logical analysis of relativity theory. In: F. Stadler (Ed.), Wiener Kreis und Ungarn. Veröffentlishungen des Instituts Wiener Kreis, Springer–Verlag, to appear.Google Scholar
  7. Benda T. (2008) A formal construction of the spacetime manifold. Journal of Philosophical Logic 37(5): 441–478CrossRefGoogle Scholar
  8. Chang C. C., Keisler H. J. (1990) Model theory. North-Holland Publishing Co, AmsterdamGoogle Scholar
  9. d’Inverno R. (1992) Introducing Einstein’s relativity. Oxford University Press, New YorkGoogle Scholar
  10. Einstein, A. (2006). Relativity. The special and the general theory Penguin Classics. Translated by W. Lawson (original publication in German 1921).Google Scholar
  11. Enderton H. B. (1972) A mathematical introduction to logic. Academic Press, New YorkGoogle Scholar
  12. Goldblatt R. (1984) Orthogonality and spacetime geometry. Springer-Verlag, New YorkGoogle Scholar
  13. Henkin L., Monk J. D., Tarski A. (1971) Cylindric algebras. Part I. North-Holland Publishing Co, AmsterdamGoogle Scholar
  14. Hodges W. (1993) Model theory, Encyclopedia of mathematics and its applications. Cambridge University Press, CambridgeGoogle Scholar
  15. Madarász, J. X. (2002). Logic and relativity (in the light of definability theory). PhD thesis, Budapest: Eötvös Loránd Univ. http://www.math-inst.hu/pub/algebraic-logic/Contents.html.
  16. Madarász J. X., Németi I., Székely G. (2006) Twin paradox and the logical foundation of relativity theory. Foundations of Physics 36(5): 681–714CrossRefGoogle Scholar
  17. Misner C. W., Thorne K. S., Wheeler J. A. (1973) Gravitation. W. H. Freeman and Co, San FranciscoGoogle Scholar
  18. Rosinger, E. E. (2008). Two essays on the Archimedean versus non-Archimedean debate. arXiv:0809.4509v3.Google Scholar
  19. Rosinger, E. E. (2009). Special relativity in reduced power algebras. arXiv:0903.0296v1.Google Scholar
  20. Sain, I. (1986). Dynamic logic with nonstandard model theory. Dissertation.Google Scholar
  21. Székely, G. (2009). First-order logic investigation of relativity theory with an emphasis on accelerated observers. PhD thesis, Budapest: Eötvös Loránd Univ. http://www.renyi.hu/~turms/phd.pdf.
  22. Tarski A. (1959) What is elementary geometry?. In: Henkin L., Suppes P., Tarski A. (eds) The axiomatic method. With special reference togeometry and physics. North-Holland Publishing Co, Amsterdam, pp 16–29Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hajnal Andréka
    • 1
  • Judit X. Madarász
    • 1
  • István Németi
    • 1
  • Gergely Székely
    • 1
  1. 1.Alfréd Rényi Institute of Mathematics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations