Synthese

, Volume 186, Issue 3, pp 619–632 | Cite as

Logic for physical space

From antiquity to present days
  • Marco Aiello
  • Guram Bezhanishvili
  • Isabelle Bloch
  • Valentin Goranko
Open Access
Article

Abstract

Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones in the logical representation of space and investigate current trends. In doing so, we do not only consider classical logic, but we indulge ourselves with modal logics. These present themselves naturally by providing simple axiomatizations of different geometries, topologies, space-time causality, and vector spaces.

Keywords

Modal logic Geometry Topology Mathematical morphology 

References

  1. Aiello, M., & Ottens, B. (2007). The Mathematical morpho-logical view on reasoning about space. In International Joint Conference on Artificial Intelligence (IJCAI’07) (pp. 205–211). Hyderabad, India.Google Scholar
  2. Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds) (2007) Handbook of spatial logics. Springer, DordrechtGoogle Scholar
  3. Aiello M., van Benthem J. (2002) A modal walk through space. Journal of Applied Non-Classical Logics 12(3–4): 319–363CrossRefGoogle Scholar
  4. Aiello M., van Benthem J., Bezhanishvili G. (2003) Reasoning about space: The modal way. Journal of Logic and Computation 13(6): 889–920CrossRefGoogle Scholar
  5. Balbiani P. (1998) The modal multilogic of geometry. Journal of Applied Non-classical Logics 8: 259–281CrossRefGoogle Scholar
  6. Balbiani P., Fariñas del Cerro L., Tinchev T., Vakarelov D. (1997) Modal logics for incidence geometries. Journal of Logic and Computation 7(1): 59–78CrossRefGoogle Scholar
  7. Balbiani P., Goranko V. (2002) Modal logics for parallelism, orthogonality, and affine geometries. Journal of Applied Non-Classical Logics 12: 365–397CrossRefGoogle Scholar
  8. Balbiani P., Goranko V., Kellerman R., Vakarelov D. (2007) Logical theories of fragments of elementary geometry. In: Aiello M., Benthem J., Pratt-Hartmann I. (eds) Handbook of spatial logics.. Springer, Dordrecht, pp 343–428CrossRefGoogle Scholar
  9. Basu S. (1999) New results on quantifier elimination over real closed fields and applications to constraint databases. JACM 46(4): 537–555CrossRefGoogle Scholar
  10. Basu S., Pollack R., Roy M.-F. (1996) On the combinatorial and algebraic complexity of quantifier elimination. Journal ACM 43(6): 1002–1045CrossRefGoogle Scholar
  11. Bezhanishvili G., Harding J. (2009) The modal logic of \({\beta(\mathbb{N})}\). Archive for Mathematical Logic 48(3–4): 231–242CrossRefGoogle Scholar
  12. Blackburn P., de Rijke M., Venema Y. (2001) Modal logic. Cambridge University Press, CambridgeGoogle Scholar
  13. Bloch I. (2002) Modal logics based on mathematical morphology for spatial reasoning. Journal of Applied Non Classical Logics 12(3–4): 399–424CrossRefGoogle Scholar
  14. Bloch I. (2006) Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. International Journal of Approximate Reasoning 41: 77–95CrossRefGoogle Scholar
  15. Bloch, I. (2007). Dilation and erosion of spatial bipolar fuzzy sets. In International Workshop on Fuzzy Logic and Applications WILF 2007, Vol. LNAI 4578 (pp. 385–393). Genova, Italy.Google Scholar
  16. Bloch I. (2011) Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology. Information Sciences 181: 2002–2015CrossRefGoogle Scholar
  17. Bloch I., Heijmans H., Ronse C. (2006) Mathematical morphology. In: Aiello M., Pratt-Hartman I., Benthem J. (eds) The logic of space. Kluwer, The Netherlands, pp 857–947Google Scholar
  18. Bloch, I., & Lang, J. (2000). Towards mathematical morpho-logics. In 8th International Conference on Information Processing and Management of Uncertainty in Knowledge based Systems IPMU 2000, Vol. III, (pp. 1405–1412). Madrid, Spain.Google Scholar
  19. Bloch I., Maître H. (1995) Fuzzy mathematical morphologies: A comparative study. Pattern Recognition 28(9): 1341–1387CrossRefGoogle Scholar
  20. Bloch, I., Pino-Pérez, R., & Uzcátegui, C. (2001). Explanatory relations based on mathematical morphology. In ECSQARU 2001 (pp. 736–747). Toulouse, France.Google Scholar
  21. Bloch, I., Pino-Pérez, R., & Uzcategui, C. (2004). A unified treatment of knowledge dynamics. In International Conference on the Principles of Knowledge Representation and Reasoning, KR2004 (pp. 329–337). Canada.Google Scholar
  22. Bloch, I., Pino-Pérez, R., & Uzcategui, C. (2006). Mediation in the framework of morphologic. In European Conference on Artificial Intelligence ECAI 2006 (pp. 190–194). Riva del Garda, Italy.Google Scholar
  23. Buchberger B., Collins G. E., Kutzler B. (1988) Algebraic methods for geometric reasoning. Annual review of computer science 3: 85–119CrossRefGoogle Scholar
  24. Chou S. (1988) An introduction to Wu’s method for mechanical theorem proving in geometry. Journal of Automated Reasoning 4: 237–267CrossRefGoogle Scholar
  25. Chou S., Gao X.S. (2001) Automated reasoning in geometry. In: Robinson A., Voronkov A. (eds) Handbook of automated reasoning. Elsevier, Amsterdam, pp 709–749Google Scholar
  26. Collins G. E. (1998) Quantifier elimination by cylindrical algebraic decomposition—Twenty years of progress. In: Caviness B. F., Johnson J. R. (eds) Quantifier elimination and cylindrical algebraic decomposition.. Springer, New York, pp 8–23CrossRefGoogle Scholar
  27. Coxeter H. (1969) Introduction to geometry. Wiley, NYGoogle Scholar
  28. de Freitas, R., Viana, J., Veloso, P., Veloso, S., & Benevides, M. (2002). On hybrid arrow logic. In Workshop on hybrid logic held at IEEE LICS. pp. 53–67.Google Scholar
  29. Eves H. (1972) A survey of geometry. Allyn and Bacon Inc, BostonGoogle Scholar
  30. Fagin R., Halpern J. Y., Moses Y., Vardi M. Y. (1995) Reasoning about knowledge. MIT Press, Cambridge, MAGoogle Scholar
  31. Feferman, S. (2006). Tarski’s influence on computer science. Logical Methods in Computer Science 2(3).Google Scholar
  32. Gabelaia, D. (2001). Modal definability in topology. Master’s thesis, ILLC, University of Amsterdam. Master’s Thesis.Google Scholar
  33. Gerson M. S. (1975) An extension of S4 complete for the neighbourhood semantics but incomplete for the relational semantics. Studia Logica 34(4): 333–342CrossRefGoogle Scholar
  34. Goldblatt R. (1980) Diodorean modality in minkowski spacetime. Studia Logica 39(2–3): 219–236CrossRefGoogle Scholar
  35. Hartshorne R. (1997) Geometry: Euclid and beyond. Springer, New YorkGoogle Scholar
  36. Haskell, D., Pillay, A., Steinhorn, C. (eds) (2000) Model theory, algebra, and geometry, Vol. 39. Cambridge University Press, MSRI Publications, CambridgeGoogle Scholar
  37. Heijmans H. J. A. M., Ronse C. (1990) The algebraic basis of mathematical morphology—Part I: Dilations and erosions. Computer Vision, Graphics and Image Processing 50: 245–295CrossRefGoogle Scholar
  38. Hilbert D. (1950) Foundations of geometry. La Salle, IllinoisGoogle Scholar
  39. Hodges W. (1993) Model theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. Jammer M. (1993) Concepts of Space: The history of theories of space in physics. Dover, New YorkGoogle Scholar
  41. Kline M. (1972) Mathematical thought from ancient to modern times, Vol. 2. Oxford University Press, Oxford, USAGoogle Scholar
  42. Loll R., Ambjorn J., Jurkiewicz J. (2006) The Universe from scratch. Contemporary Physics 47: 103–107CrossRefGoogle Scholar
  43. Macintyre A. (2003) Model theory: Geometrical and set-theoretic aspects and prospects. Bulletin of Symbolic Logic 9(2): 197–212CrossRefGoogle Scholar
  44. Matheron G. (1967) Eléments pour une théorie des milieux poreux. Masson, ParisGoogle Scholar
  45. Matheron G. (1975) Random sets and integral geometry. Wiley, New-YorkGoogle Scholar
  46. McKinsey J. C. C., Tarski A. (1944) The algebra of topology. Annals of Mathematics 45: 141–191CrossRefGoogle Scholar
  47. Meserve B. (1983) Fundamental concepts of geometry (2nd ed.). Dover Publications, New YorkGoogle Scholar
  48. Pambuccian V. (1989) Simple axiom systems for euclidean geometry. Mathematical Chronicle 18: 63–74Google Scholar
  49. Pambuccian V. (2001) Constructive axiomatizations of plane absolute, euclidean and hyperbolic geometry. Mathematical Logic Quarterly 47: 129–136CrossRefGoogle Scholar
  50. Pambuccian V. (2001) Fragments of euclidean and hyperbolic geometry. Scientiae Mathematicae Japonicae 53(2): 361–400Google Scholar
  51. Pambuccian V. (2004) The simplest axiom system for plane hyperbolic geometry. Studia Logica 77: 385–411CrossRefGoogle Scholar
  52. Ronse C., Heijmans H. J. A. M. (1991) The algebraic basis of mathematical morphology—Part II: Openings and closings. Computer Vision, Graphics and Image Processing 54: 74–97Google Scholar
  53. Schwabhäuser W., Szmielew W., Tarski A. (1983) Metamathematische methoden in der geometrie. Springer, BerlinGoogle Scholar
  54. Serra J. (1982) Image analysis and mathematical morphology. Academic Press, LondonGoogle Scholar
  55. Shapirovsky, I., & Shehtman, V. (2003). Chronological future modality in minkowski spacetime. In Advances in modal logic, (Vol. 4, pp. 437–459). London: King’s Coll. Publication.Google Scholar
  56. Shapirovsky I., Shehtman V. (2005) Modal logics of regions and minkowski spacetime. Journal of Logic and Computation 15(4): 559–574CrossRefGoogle Scholar
  57. Shehtman, V. (1999). “Everywhere” and “here”. Journal of Applied Non-Classical Logics, 9(2–3), 369–379. Issue in memory of George Gargov.Google Scholar
  58. Shehtman V. B. (1983) Modal logics of domains on the real plane. Studia Logica 42(1): 63–80CrossRefGoogle Scholar
  59. Singer I.M., Thorpe J.A. (1967) Lecture notes on elementary topology and geometry. Springer, New YorkGoogle Scholar
  60. Stillwell J. (2004) Mathematics and its History (2nd ed.). Springer, New YorkGoogle Scholar
  61. Stillwell J. (2005) The four pillars of geometry. Springer, New YorkGoogle Scholar
  62. Tarski A. (1938) Der aussagenkalkül und die topologie. Fundamenta Mathematicae 31: 103–134Google Scholar
  63. Tarski A. (1959) What is elementary geometry?. In: Henkin L., Suppes P., Tarski A. (eds) The axiomatic method, with special reference to geometry ad physics. North-Holland, Amsterdam, pp 16–29Google Scholar
  64. Tarski A. (1967) The completeness of elementary algebra and geometry. Technical report, Institut Blaise PascalGoogle Scholar
  65. Tarski A., Givant S. (1999) Tarski’s system of geometry. Bulletin of Symbolic Logic 5(2): 175–214CrossRefGoogle Scholar
  66. ten Cate B., Gabelaia D., Sustretov D. (2009) Modal languages for topology: Expressivity and definability. Annals of Pure and Applied Logic 159(1–2): 146–170CrossRefGoogle Scholar
  67. van Benthem, J., & Bezhanishvili, G. (2007) Modal logics of space. In Handbook of spatial logics (pp. 217–298). Dordrecht: Springer.Google Scholar
  68. Venema, Y. (1996). A crash course in arrow logic. In M. Marx, M. Masuch, & L. Pólos, Arrow logic and multimodal logic. Stanford, CA: CSLI.Google Scholar
  69. Venema Y. (1999) Points, lines and diamonds: A two-sorted modal logic for projective planes. Journal of Logic and Computation 9: 601–621CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Marco Aiello
    • 1
  • Guram Bezhanishvili
    • 2
  • Isabelle Bloch
    • 3
  • Valentin Goranko
    • 4
  1. 1.University of GroningenGroningenThe Netherlands
  2. 2.New Mexico State UniversityLas CrucesUSA
  3. 3.Telecom ParisTech (ENST), CNRS UMR 5141 LTCIParisFrance
  4. 4.Technical University of DenmarkLyngbyDenmark

Personalised recommendations