Synthese

, Volume 187, Issue 3, pp 925–942 | Cite as

The categorical and the hypothetical: a critique of some fundamental assumptions of standard semantics

Article

Abstract

The hypothetical notion of consequence is normally understood as the transmission of a categorical notion from premisses to conclusion. In model-theoretic semantics this categorical notion is ‘truth’, in standard proof-theoretic semantics it is ‘canonical provability’. Three underlying dogmas, (I) the priority of the categorical over the hypothetical, (II) the transmission view of consequence, and (III) the identification of consequence and correctness of inference are criticized from an alternative view of proof-theoretic semantics. It is argued that consequence is a basic semantical concept which is directly governed by elementary reasoning principles such as definitional closure and definitional reflection, and not reduced to a categorical concept. This understanding of consequence allows in particular to deal with non-wellfounded phenomena as they arise from circular definitions.

Keywords

Consequence Inference Proof-theoretic semantics Definitional reflection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brotherston, J., & Simpson, A. (2007). Complete sequent calculi for induction and infinite descent. In Proceedings of the 22nd annual IEEE symposium on logic in computer science (LICS), (pp. 51–62). Los Alamitos: IEEE Press.Google Scholar
  2. Dummett, M. (1978). The justification of deduction (1973). In Truth and Other Enigmas. London: Duckworth.Google Scholar
  3. Hallnäs L. (1991) Partial inductive definitions. Theoretical Computer Science 87: 115–142CrossRefGoogle Scholar
  4. Hallnäs L. (2006) On the proof-theoretic foundation of general definition theory. Synthese 148: 589–602CrossRefGoogle Scholar
  5. Hallnäs, L., & Schroeder-Heister, P. (1990/91). A proof-theoretic approach to logic programming: I. Clauses as rules. II. Programs as definitions. Journal of Logic and Computation, 1, 261–283, 635–660.Google Scholar
  6. Hallnäs, L., & Schroeder-Heister, P. (2012). A survey of definitional reflection (in preparation).Google Scholar
  7. Kreuger, P. (1994). Axioms in definitional calculi. In R. Dychhoff (Ed.), Extensions of logic programming. 4th international workshop, ELP’93 (St. Andrews,U.K., March/April 1993). Proceedings (Lecture Notes in Computer Science) (Vol. 798, pp. 196–205). Berlin: Springer.Google Scholar
  8. Lorenzen P. (1950) Konstruktive Begründung der Mathematik. Mathematische Zeitschrift 53: 162–202CrossRefGoogle Scholar
  9. Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik (2nd Edn. 1969). Berlin: Springer.Google Scholar
  10. Orevkov, V. P. (1982). Lower bounds for increasing complexity of derivations after cut elimination (Transl., russ. orig. 1979). Journal of Soviet Mathematics, 20, 2337–2350.Google Scholar
  11. Post E. L. (1921) Introduction to a general theory of elementary propositions. American Journal of Mathematics 43: 163–185CrossRefGoogle Scholar
  12. Post E. L. (1943) Formal reductions of the general combinatorial decision problem. American Journal of Mathematics 65: 197–215CrossRefGoogle Scholar
  13. Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiksell: Stockholm (Reprinted Mineola NY: Dover Publ., 2006).Google Scholar
  14. Prawitz, D. (1973). Towards a foundation of a general proof theory. In P. Suppes et al. (Eds.), Logic, methodology and philosophy of science IV (pp. 225–250). Amsterdam: North-HollandGoogle Scholar
  15. Prawitz, D. (1979). Proofs and the meaning and completeness of the logical constants. In J. Hintikka et al. (Eds.), Essays on mathematical and philosophical logic (pp. 25–40). Dordrecht: KluwerGoogle Scholar
  16. Schroeder-Heister P. (1984) A natural extension of natural deduction. Journal of Symbolic Logic 49: 1284–1300CrossRefGoogle Scholar
  17. Schroeder-Heister P. (1991) Structural frameworks, substructural logics, and the role of elimination inferences. In: Huet G., Plotkin G. (eds) Logical frameworks. Cambridge University Press, New York, pp 385–403CrossRefGoogle Scholar
  18. Schroeder-Heister, P. (1992). Cut elimination in logics with definitional reflection. In D. Pearce & H. Wansing (Eds.), Nonclassical logics and information processing: International workshop, Berlin, November 1990, Proceedings (Lecture Notes in Computer Science) (Vol. 619, pp. 146–171). Berlin: Springer.Google Scholar
  19. Schroeder-Heister, P. (2004). On the notion of assumption in logical systems. In R. Bluhm & C. Nimtz (Eds.), Selected papers contributed to the sections of GAP5, fifth international congress of the Society for Analytical Philosophy, Bielefeld, 22–26 September 2003 (pp. 27–48). Mentis: Paderborn http://www.gap5.de/proceedings.
  20. Schroeder-Heister, P. (2008). Proof-theoretic versus model-theoretic consequence. In M. Peliš (Ed.), The Logica Yearbook 2007 (pp. 187–200). Filosofia: Prague.Google Scholar
  21. Schroeder-Heister P. (2009) Sequent calculi and bidirectional natural deduction: On the proper basis of proof-theoretic semantics. In: Peliš M. (eds) The Logica Yearbook 2008. College Publications, LondonGoogle Scholar
  22. Schroeder-Heister, P. (2011a). Generalized elimination inferences, higher-level rules, and the implications-as-rules interpretation of the sequent calculus. In E. H. Haeusler, L. C. Pereira, & V. de Paiva (Eds.), Advances in natural deduction.Google Scholar
  23. Schroeder-Heister, P. (2011b). Implications-as-rules vs. implications-as-links: An alternative implication-left schema for the sequent calculus. Journal of Philosophical Logic, 40 95–101.Google Scholar
  24. Schroeder-Heister, P. (2011c). Proof-theoretic semantics. In Ed. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Stanford: Stanford University. http://plato.stanford.edu.
  25. Smullyan, R. (1961). Theory of formal systems. Annals of mathematics studies 47. Princeton: Princeton University Press.Google Scholar
  26. Statman R. (1979) Lower bounds on Herbrand’s theorem. Proceedings of the American Mathematical Society 75: 104–107Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations