Synthese

, Volume 187, Issue 3, pp 943–956

“Inference versus consequence” revisited: inference, consequence, conditional, implication

Open Access
Article

Abstract

Inference versus consequence, an invited lecture at the LOGICA 1997 conference at Castle Liblice, was part of a series of articles for which I did research during a Stockholm sabbatical in the autumn of 1995. The article seems to have been fairly effective in getting its point across and addresses a topic highly germane to the Uppsala workshop. Owing to its appearance in the LOGICA Yearbook 1997, Filosofia Publishers, Prague, 1998, it has been rather inaccessible. Accordingly it is republished here with only bibliographical changes and an afterword.

Keywords

Inference Consequence Validity Judgement Proposition Type theory 

References

  1. Bochenski I. M. (1970) A history of formal logic. Chelsea Publishing Co, New YorkGoogle Scholar
  2. Boh I. (1993) Epistemic logic in the later Middle Ages. Routledge, LondonGoogle Scholar
  3. Bolzano, B. (1837). Wissenschaftslehre (Vols. I–IV). J. von Seidel, Sulzbach. Cited as WL.Google Scholar
  4. Brentano F. (1930) Wahrheit und Evidenz, cited after the second edition. Felix Meiner, HamburgGoogle Scholar
  5. Carnap R. (1937) The logical syntax of language. Routledge and Kegan Paul, LondonGoogle Scholar
  6. Dummett M. (1973) Frege. Philosophy of language. Duckworth, LondonGoogle Scholar
  7. Dummett M. (1976) What is a theory of meaning? II. In: Evans G., McDowell J. (eds) Truth and meaning. Clarendon Press, Oxford, pp 67–137Google Scholar
  8. Frege G. (1906) Uber die Grundlagen der Geometrie. Jahresberichte der Deutschen Mathematiker-Vereinigung 15: 377–403Google Scholar
  9. Frege, G. (1976). In G. Gabriel, et al. (Eds.), Wissenschaftliche Briefwechslung. Hamburg: Felix Meiner.Google Scholar
  10. Gentzen, G. (1934–1935). Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210, 405–431.Google Scholar
  11. Gentzen G. (1936) Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen 112: 493–565CrossRefGoogle Scholar
  12. Kneale W., Kneale M. (1961) The development of logic. Clarendon Press, OxfordGoogle Scholar
  13. Martin C. J. (1986) William’s machine. Journal of Philosophy 83: 564–572CrossRefGoogle Scholar
  14. Martin-Löf P. (1984) Intuitionistic type theory. Bibliopolis, NaplesGoogle Scholar
  15. Martin-Löf P. (1987) Truth of a proposition, evidence of a judgement, validity of a proof. Synthese 73: 191–212CrossRefGoogle Scholar
  16. Martin-Löf, P. (1996). On the meanings of the logical constants and the justification of the logical laws. Nordic Journal of Philosophical Logic, 1, 11–60. http://www.hf.uio.no/filosofi/njpl/. (Originally published in 1985)
  17. Martin-Löf P. (1998) Truth and knowability: On the principles C and K of Michael Dummett. In: Dales H. G., Oliveri G. (eds) Truth in mathematics. Clarendon Press, Oxford, pp 105–114Google Scholar
  18. Nordström B., Petterson K., Smith J. M. (1990) Programming in Martin-Löf’s type theory. Clarendon Press, OxfordGoogle Scholar
  19. Nuchelmans G. (1988) The distinction actus exercitus/actus significatus in medieval semantics. In: Kretzmann N. (eds) Meaning and inference in medieval philosophy. Kluwer, Dordrecht, pp 57–90CrossRefGoogle Scholar
  20. Prawitz D. (1971) Ideas and results in proof theory. In: Fenstad J. E. (eds) Proceedings of the second Scandinavian logic symposium. North-Holland, Amsterdam, pp 235–307CrossRefGoogle Scholar
  21. Quine W.V.O. (1951) Mathematical logic (rev. ed.). Harvard University Press, Cambridge, MAGoogle Scholar
  22. Quine, W. V. (1963). Two dogmas of empiricism. In From a logical point of view (rev. ed., pp. 20–46). New York: Harper and Row. (Originally published in 1951)Google Scholar
  23. Ranta A. (1994) Type-theoretical grammar. Clarendon, OxfordGoogle Scholar
  24. Rüthing D. (1984) Some definitions of the concept of function from Bernoulli, Joh. to Bourbaki, N. Mathematical Intelligencer 6(4): 72–77Google Scholar
  25. Shoenfield J. (1967) Mathematical logic. Addison Wesley, NYGoogle Scholar
  26. Siebel M. (1996) Der Begriff Ableibarkeit bei Bolzano. Academia Verlag, Sankt AugustinGoogle Scholar
  27. Sundholm G. (1997) Implicit epistemic aspects of constructive logic. Journal of Logic, Language, and Information 6: 191–212CrossRefGoogle Scholar
  28. Sundholm G. (1998) Inference, consequence, implication. Philosophia Mathematica 6: 178–194CrossRefGoogle Scholar
  29. Sundholm, G. (2000). Proofs as acts and proofs as objects: Some questions for Dag Prawitz’. Theoria, 64 (for 1998, published in 2000): 2–3 (special issue devoted to the works of Dag Prawitz, with his replies), pp. 187–216.Google Scholar
  30. Sundholm G. (2006) Semantic values of natural deduction derivations. Synthese 148(3): 623–638CrossRefGoogle Scholar
  31. Tarski, A. (1936). Über den Begriff der logischen Folgerung. In Actes du Congrès International de Philosophie Scientifique, VII, Actualités Scientifiques et Industrielles (Vol. 394, pp. 1–11). Paris: Hermann et Cie.Google Scholar
  32. Tarski A., Vaught R. (1957) Arithmetical extensions of relational systems. Compositio Mathematica 13: 81–102Google Scholar
  33. Tennant N. (1978) Natural logic. Edinburgh University Press, EdinburghGoogle Scholar
  34. Wittgenstein L. (1922) Tractatus logico-philosophicus. Routledge and Kegan Paul, LondonGoogle Scholar
  35. Wright C. (1987) Realism, meaning and truth. Blackwell, OxfordGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Leiden UniversityLeidenThe Netherlands

Personalised recommendations