, Volume 188, Issue 1, pp 41–65 | Cite as

Branching in the landscape of possibilities

  • Thomas Müller
Open Access


The metaphor of a branching tree of future possibilities has a number of important philosophical and logical uses. In this paper we trace this metaphor through some of its uses and argue that the metaphor works the same way in physics as in philosophy. We then give an overview of formal systems for branching possibilities, viz., branching time and (briefly) branching space-times. In a next step we describe a number of different notions of possibility, thereby sketching a landscape of possibilities. In the final section of the paper we look at the place of branching-based possibilities in that larger landscape of possibilities. Our main message is that far from being an outlandish metaphysical extravagancy, branching-based possibilities are epistemically as well as metaphysically basic.


Branching time Branching space-times Modality Possibility Experiment 



I would like to thank audiences in Bristol and Utrecht for many helpful discussions, and two referees for their comments and criticism. Support by VIDI grant 276-20-013 of the Netherlands Organization for Scientific Research is gratefully acknowledged. Special thanks to Sebastian Lutz and Jesse Mulder for their detailed feedback on a previous draft.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. AMS. (2010). American Mathematical Society Mathematics Subject Classification 2010. Accessed 11 Dec 2010.
  2. Belnap, N. (1992). Branching space-time. Synthese, 92(3), 385–434. See also the postprint 2003, available on philsci-archive.Google Scholar
  3. Belnap N. (1999) Concrete transitions. In: Meggle G. (eds) Actions, norms, values: Discussions with Georg Henrik von Wright. de Gruyter, Berlin, pp 227–236Google Scholar
  4. Belnap N. (2002a) Double time references: Speech-act reports as modalities in an indeterminist setting. In: Wolter F., Wansing H., de Rijke M., Zakharyaschev M. (eds) Advances in modal logic. World Scientific, Singapore, pp 37–58CrossRefGoogle Scholar
  5. Belnap N. (2002b) EPR-like “funny business” in the theory of branching space-times. In: Placek T., Butterfield J. (eds) Non-locality and modality. Kluwer, Dordrecht, pp 293–315CrossRefGoogle Scholar
  6. Belnap N. (2003) No-common-cause EPR-like funny business in branching space-times. Philosophical Studies 114: 199–221CrossRefGoogle Scholar
  7. Belnap N. (2005) A theory of causation: Causae causantes (originating causes) as inus conditions in branching space-times. British Journal for the Philosophy of Science 56: 221–253CrossRefGoogle Scholar
  8. Belnap N. (2007a) From Newtonian determinism to branching space-time indeterminism. In: Müller T., Newen A. (eds) Logik, Begriffe, Prinzipien des Handelns. Mentis, Paderborn, pp 13–31Google Scholar
  9. Belnap N. (2007b) Propensities and probabilities. Studies in History and Philosophy of Modern Physics 38(3): 593–625CrossRefGoogle Scholar
  10. Belnap N., Perloff M. (1988) Seeing to it that: A canonical form for agentives. Theoria (Lund) 54(3): 175–199Google Scholar
  11. Blackburn P., De Rijke M., Venema Y. (2001) Modal logic. Cambridge University Press, CambridgeGoogle Scholar
  12. Bogen J., Woodward J. (1988) Saving the phenomena. The Philosophical Review 97(3): 303–352CrossRefGoogle Scholar
  13. Byrne P. (2010) Everett and Wheeler: The untold story. In: Saunders S., Barrett J., Kent A., Wallace D. (eds) Many worlds? Everett, quantum theory, and reality. Oxford University Press, Oxford, pp 521–541Google Scholar
  14. Church A. (1956) Introduction to mathematical logic. Princeton University Press, Princeton, NJGoogle Scholar
  15. Cooper L. N. (1976) How possible becomes actual in the quantum theory. Proceedings of the American Philosophical Society 120(1): 37–45Google Scholar
  16. Cooper L. N., Van Vechten D. (1969) On the interpretation of measurement within the quantum theory. American Journal of Physics 37: 1212–1220CrossRefGoogle Scholar
  17. DeWitt B. S. (1970) Quantum mechanics and reality. Physics Today 23(9): 30–35CrossRefGoogle Scholar
  18. Dretske F. (1994) If you can’t make one, you don’t know how it works. Midwest Studies in Philosophy 19: 468–482CrossRefGoogle Scholar
  19. Dullstein, M. (2008). Verursachung und kausale Relevanz. Eine Analyse singulärer Kausalaussagen. Ph.D. thesis, University of Heidelberg.Google Scholar
  20. Dummett M. (1964) Bringing about the past. Philosophical Review 73(3): 338–359CrossRefGoogle Scholar
  21. Earman J. (2007) Aspects of determinism in modern physics. In: Butterfield J., Earman J. (eds) Handbook of the philosophy of physics. Elsevier, Amsterdam, pp 1369–1434CrossRefGoogle Scholar
  22. Everett (1957) ‘Relative state’ formulation of quantum mechanics. Reviews of Modern Physics 29(3): 454–462CrossRefGoogle Scholar
  23. Feathers N. (1947) Radioactive branching. Reports on Progress in Physics 11: 19–31CrossRefGoogle Scholar
  24. Fine K. (2005) Modality and tense. Oxford University Press, OxfordCrossRefGoogle Scholar
  25. Frigg R. (2010) Models and fiction. Synthese 172: 251–268CrossRefGoogle Scholar
  26. Gopnik, A., Schulz, L. (eds) (2007) Causal learning. Psychology, philosophy, and computation. Oxford University Press, OxfordGoogle Scholar
  27. Hazen A. (1979) Counterpart-theoretic semantics for modal logic. Journal of Philosophy 76(6): 319–338CrossRefGoogle Scholar
  28. Hopf E. (1942) Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-Physikalische Klasse 94: 3–22Google Scholar
  29. Kolmogorov, A. N., & Dmitriev, N. A. (1947). Branching stochastic processes. Comptes Rendus (Doklady) de’l Académie des Sciences de l’URSS, 56(1), 5–8. See also Mathematical Reviews, 9, 1 (1948) 46.Google Scholar
  30. Kratzer A. (1991) Modality. In: von Stechow A., Wunderlich D. (eds) Semantics: An international handbook of contemporary research. de Gruyter, Berlin, pp 639–650Google Scholar
  31. Kripke S. (1980) Naming and necessity. Blackwell (Originally published in 1972), OxfordGoogle Scholar
  32. Leslie A. M., Keeble S. (1987) Do six-month-old infants perceive causality?. Cognition 25: 265–288CrossRefGoogle Scholar
  33. Lewis D. K. (1986) On the plurality of worlds. Blackwell, OxfordGoogle Scholar
  34. Lindenbaum, A., & Tarski, A. (1936). Über die Beschränktheit der Ausdrucksmittel deduktiver Theorien. Ergebnisse eines mathematischen Kolloquiums, 7, 15–22. (English translation in Tarski, Logic, Semantics, Metamathematics, Hackett 1983, Ch. XIII).Google Scholar
  35. Mackie, P. (2008). Transworld identity. In E. N. Zalta (Eds.), The Stanford encyclopedia of philosophy. Fall 2008 edition.
  36. Müller T. (2002) Branching space-time, modal logic and the counterfactual conditional. In: Placek T., Butterfield J. (eds) Non-locality and modality. Kluwer, Dordrecht, pp 273–291CrossRefGoogle Scholar
  37. Müller T. (2005) Probability theory and causation: A branching space-times analysis. British Journal for the Philosophy of Science 56(3): 487–520CrossRefGoogle Scholar
  38. Müller T. (2007) A branching space-times view on quantum error correction. Studies in History and Philosophy of Modern Physics 38: 635–652CrossRefGoogle Scholar
  39. Müller T. (2010) Towards a theory of limited indeterminism in branching space-times. Journal of Philosophical Logic 39: 395–423CrossRefGoogle Scholar
  40. Müller, T. (2011a). Branching space-times, general relativity, the Hausdorff property, and modal consistency. Forthcoming; preprint at
  41. Müller T. (2011) Probabilities in branching structures. In: Dieks D., Gonzales W.J., Hartmann S., Uebel T., Weber M. (eds) Explanation, prediction and confirmation The philosophy of science in a European perspective, Vol. 2. Springer, Dordrecht, pp 109–121Google Scholar
  42. Müller T., Belnap N., Kishida K. (2008) Funny business in branching space-times: Infinite modal correlations. Synthese 164: 141–159CrossRefGoogle Scholar
  43. Øhrstrøm P. (2009) In defence of the thin red line: A case for Ockhamism. Humana.Mente 8: 17–32Google Scholar
  44. Peres A. (1986) Existence of “free will” as a problem of physics. Foundations of Physics 16(6): 573–584CrossRefGoogle Scholar
  45. Placek T. (2010) Bell-type correlations in branching space-times. In: Czarnecki T., Kijania-Placek K., Poller O., Woleński J. (eds) The analytic way Proceedings of the European congress on analytic philosophy, Kraków, August 2008. College Publications, LondonGoogle Scholar
  46. Placek T. (2011) Possibilities without possible worlds/histories. Journal of Philosophical Logic 40(6): 737–765CrossRefGoogle Scholar
  47. Placek T., Müller T. (2007) Counterfactuals and historical possibility. Synthese 154: 173–197CrossRefGoogle Scholar
  48. Placek T., Wroński L. (2009) On infinite EPR-like correlations. Synthese 167(1): 1–32CrossRefGoogle Scholar
  49. Ploug, T and Øhrstrøm. (2011). Branching time, indeterminism and tense logic. Unveiling the Prior–Kripke letters. Synthese, doi: 10.1007/s11229-011-9944-2.
  50. Prior A. N. (1957) Time and modality. Oxford University Press, OxfordGoogle Scholar
  51. Prior A. N. (1962) Possible worlds. The Philosophical Quarterly 12(46): 36–43CrossRefGoogle Scholar
  52. Russell B. (1908) Mathematical logic as based on the theory of types. American Journal of Mathematics 30(3): 222–262CrossRefGoogle Scholar
  53. Saunders S. (2010) Chance in the Everett interpretation. In: Saunders S., Barrett J., Kent A., Wallace D. (eds) Many worlds? Everett, quantum theory, and reality. Oxford University Press, Oxford, pp 181–205Google Scholar
  54. Sellars, W. (1963). Philosophy and the scientific image of man. In Science, perception and reality (pp. 1–40). London: Routledge/Kegan Paul.Google Scholar
  55. Thomason R. H. (1970) Indeterminist time and truth-value gaps. Theoria 36: 264–281CrossRefGoogle Scholar
  56. Thomason, R. H. (1984). Combinations of tense and modality. In D. Gabbay, & G. Guenthner (Eds.), Handbook of philosophical logic, Vol. II: Extensions of classical logic, Vol. 165 of Synthese library, studies in epistemology (pp. 135–165). Dordrecht: D. Reidel Publishing Company.Google Scholar
  57. van Inwagen P. (1993) Naive mereology, admissible valuations, and other matters. Noûs 27(2): 229–234CrossRefGoogle Scholar
  58. von Wright G. H. (1963) Norm and action. A logical inquiry. Routledge, LondonGoogle Scholar
  59. Walton K. L. (1990) Mimesis as make-believe: On the foundations of the representational arts. Harvard University Press, Cambridge, MAGoogle Scholar
  60. Waring, R. S. (1882). Method of dividing and branching electric cables. Patent 268 324, Pittsburgh, 28 November 1882.Google Scholar
  61. Weiner M., Belnap N. (2006) How causal probabilities might fit into our objectively indeterministic world. Synthese 149: 1–36CrossRefGoogle Scholar
  62. Whitehead A. N., Russell B. (1910) Principia Mathematica. Cambridge University Press, CambridgeGoogle Scholar
  63. Wiggins D. (2001) Sameness and substance renewed. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Wroński L., Placek T. (2009) On Minkowskian branching structures. Studies in History and Philosophy of Modern Physics 40: 251–258CrossRefGoogle Scholar
  65. Xia Z. (1992) The existence of noncollision singularities in Newtonian systems. Annals of Mathematics 135(3): 411–468CrossRefGoogle Scholar
  66. Zetie K. (1996) The strange case of the bumble-bee that flew. Physics World 9(10): 72Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations