, Volume 187, Issue 3, pp 973–974

Erratum to: Between proof and truth



  1. Bonnay D. (2004) Preuves et jeux s’emantiques. Philosophia Scientiae 8(2): 105–123Google Scholar
  2. Coquand T. (1995) A semantics of evidence for classical arithmetic. Journal of Symbolic Logic 60(1): 325–337CrossRefGoogle Scholar
  3. Dummett, M. (1978a). The philosophical basis of intuitionistic logic. In Truth and other enigmas. London: Duckworth.Google Scholar
  4. Dummett, M. (1978b). The philosophical significance of Gödel’s theorem. In Truth and other enigmas . London: Duckworth.Google Scholar
  5. Hayashi S. (2007) Can proofs be animated by games?. Fundamenta Informaticae 77: 1–13Google Scholar
  6. Hintikka J. (1996) The principles of mathematics revisited. Cambridge University Press, BostonCrossRefGoogle Scholar
  7. Krivine J. L. (2003) Dependent choice, ‘quote’ and the clock. Theoretical Computer Science 308: 259–276CrossRefGoogle Scholar
  8. Lorenzen, K. (1959). Ein dialogishes konstruktivitatskriterium. In Infinitistic methods. Proceedings of the symposium on the foundations of mathematics, PWN, Warszawa (pp. 193–200). London: Pergamon Press.Google Scholar
  9. Milne P. (2007) On Gödel sentences and what they say. Philosophia Mathematica III 15: 193–226CrossRefGoogle Scholar
  10. Tait W. W. (2005) Gödel’s reformulation of Gentzen’s first consistency proof for arithmetic: The no-counterexample interpretation. The Bulletin of Symbolic Logic 11(2): 225–238CrossRefGoogle Scholar
  11. Tennant N. (2002) Deflationism and the Gödel phenonmena. Mind 111(443): 551–582CrossRefGoogle Scholar
  12. van Benthem, J. (2001). Logic in games. Lecture Notes. Amsterdam: ILLC.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.HelsinkiFinland
  2. 2.IHPST, Université Paris 1 Panthéon-SorbonneParisFrance

Personalised recommendations